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Abstract

  Infectious disease modelling is a useful tool for supporting outbreak control, offering to interpret

the complex uncertainty of epidemiological dynamics. This uncertainty allows for many

approaches, choices, and interpretations during modelling work, producing a wide variety of

modelling results. Multi-model collaborations create comparability across this diversity, and the

opportunity for evidence synthesis. This often includes a quantitative combination of numerical

model results.

This thesis evaluates collaborative modelling work during the COVID-19 response in the UK and

Europe. Four papers draw from the UK’s Scientific Pandemic Infections group on Modelling

(SPI-M), and the European COVID-19 Forecast and Scenario Hubs. First, I found that outbreak

detection may be confounded by combining estimates of the reproduction number, aggregating

over relevant heterogeneity. Next, I evaluated ensemble projections of both short- and long-term

COVID-19 incidence, characterising predictive performance, representation of uncertainty, and

policy relevance. I then identified tensions in the structural sustainability of modelling work for

outbreak response.

A thematic analysis draws out shared challenges in collaborative outbreak modelling. Modelling

collaborations are vulnerable to sampling biases that may limit the validity of multi-model

combinations, while also facing varied and competing stakeholder needs. Meanwhile,

collaborative decision support may face a fundamental trade-off between offering consensus

versus context: creating a single evidence synthesis risks losing insight into heterogeneous

epidemic dynamics. A further trade-off challenges collaboration with capacity: multi-model

combinations depend on consistent model components, despite collaborators’ constrained

capacity during emergency response.

Selecting an appropriate strategy to resolve these tensions likely depends on the purpose,

timing, and scale of outbreak decision-making. Future work should explore the validity of

epidemiological inference from multi-model combinations, and clarify both capacity constraints

and stakeholder needs at the science-policy interface.
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Background

Collaborative outbreak modelling

Computational modelling is a useful tool for interpreting the complex uncertainty of infectious

disease dynamics. It becomes particularly relevant during disease outbreaks, with limited data

available and when modelling may be the only such tool at hand [1]. Modelling can be used to

support a variety of outbreak response needs. These might include characterising

epidemiological processes, predicting future trends, or exploring different scenarios for

intervention [2]. At the same time, modellers face many layers of uncertainty: both in complex

epidemic dynamics, and in the multiplicity of methods for modelling them [3]. This results in a

diversity of models which are worthy of comparison. This comparison may in turn offer the

opportunity for multi-model combination.

Modelling work draws across multiple forms of knowledge and combines this with an

understanding of underlying mechanisms into a single modelling framework. This process

requires many uncertain choices among multiple plausible and interrelated options. Firstly, the

dynamics of infectious disease transmission are fundamentally uncertain because they are

typically stochastic, non-linear, and remain largely unobserved in data [4]. Furthermore, there

are now many available computational modelling methods to estimate these uncertainties [5].

For example, modellers may vary in the extent to which they rely on inevitably lagged and

biased data, or incorporate current understandings of natural history of infection or immunity [6];

in how this understanding is parameterised and calibrated to data [7]; or in which tools are used

to implement a particular model strategy [8]. As a result, modelling approaches can vary widely,

and different choices made by modellers to address uncertainty may lead to different results,

even if they are equally valid. Rather than competing to provide a single best option, each

model may be thought of as adding another perspective [9].

Faced with this diversity, working in collaboration allows modellers to compare among these

approaches, choices, and results. Collaborations bring modellers together around one or more

epidemiological targets, and collate multiple model results in a standardised format. This offers

comparability across the diversity of modelling work. Modelling collaborations may aim to enable

expert elicitation among modellers [10], clarify the extent and policy relevance of uncertainty

[11], and provide a synthesis of modelling evidence [12]. This could include producing a
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qualitative narrative synthesis, or directly processing model outputs into a quantitative

multi-model combination, such as a summary range or an ensemble projection.

Opportunities from collaborative modelling

In the context of a rapidly evolving outbreak, working in collaboration may be essential for

supporting modelling responders. Collaborations can allow modellers to better access and

interpret context-dependent data and decision needs, allowing for model development in

response to rapidly evolving epidemic dynamics and insights [13–15], or identify data issues

and biases [1]. As well as improving quality, collaborative work can support broader modelling

capacity building [16,17], while open collaborations specifically promote a transparent approach

to epidemic modelling [11]. This is particularly important where modelling work has traditionally

only been reported through the academic publication process, which is too slow for policy use

[18]. At the same time, both modelling methods and code remain underreported, making it

difficult to assess either quality or comparability [19,20].

At the same time, modelling collaborations typically define themselves as increasing the

relevance of modelling to outbreak decision making [17,21,22]. Model stakeholders typically

include public health decision makers amid a wider landscape of outbreak response work [22].

Model stakeholders may draw on different types of modelling evidence over time and can

themselves inform model development. Best practice guidance for individual modellers

suggests decision support should include a clear understanding of stakeholder needs and a

timely and ongoing cycle of feedback between model development, interpretation, and use

[22–24]. A collaborative structure can centralise this activity. This may support modellers

otherwise unable to build relationships with model stakeholders, reduce research waste, and

increase both trust and diversity in the modelling used for decision support [22].

However, communicating the multi-layered uncertainties between and within models is highly

challenging [23,25], and potential users of modelling evidence can be overwhelmed by its

diversity [9]. For example, using different methods to confront the same policy question can

create contrasting results, with potentially conflicting policy implications [26]. Stakeholders in

modelling evidence may deal with this by relying on a single model, underestimating the full

extent of uncertainty and potentially missing decision-relevant information [10]. This creates an

important role for well structured comparison and communication of modelling evidence [27,28].
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In approaching this, collaborative projects often centre around model combinations as offering a

synthesis of modelling evidence. Specifically, quantitative combinations are justified by arguing

that the combined result from multiple models produces a more robust characterisation of the

modelling target than any single model alone [11,27,29]. This argument may work by analogy to

the greater accuracy of forecast prediction using ensemble models [30]. Repeated studies

across fields have shown the increased accuracy of predicting observed data when multiple

model predictions are combined [31,32], including in outbreak forecasting across multiple

pathogens, outbreaks, and years (e.g. [13,33,34]). An alternative analogy is to meta-analysis

[35]. In this approach, each model is viewed as giving some information about an effect and

statistical combination across comparable model outputs gives a more precise, or less biased,

effect estimate.

Modelling collaborations played a prominent role in the research and policy environment of the

COVID-19 response, while building on a history of collaborative responses to infectious disease

outbreaks. These have included endemic pathogens, such as dengue [36] or influenza [37], and

emerging epidemics, such as Foot & Mouth Disease in 2001 [38], H1N1 pandemic influenza in

2009 [1], or in post-response evaluation of Ebola after 2014 [13,39]. Collaborative modelling

became highly salient during COVID-19. These included scientific advisory groups for national

policy, for example in the UK [40] and Europe [41]; international comparisons based on region or

resource context [16,28,42]; or open source collaborations, including for real-time outbreak

monitoring [43], short-term prediction [34,44], or comparing scenarios for intervention [45].

Similar collaborations have been highlighted as a way forward for the field of policy-relevant

infectious disease modelling [11], and collaborations are now targets for substantial investment.

At an international level, the World Health Organisation (WHO) has invested in a Hub for

Pandemic and Epidemic Intelligence [46]. At a regional scale, the European Centre for Disease

Prevention and Control (ECDC) is extending cross-European collaborations built during

COVID-19 to seasonal respiratory infections [47]; while the US CDC has launched a long-term

Infectious Disease Modeling and Analytics Initiative [17]. As a global open-source initiative, the

“hubverse” [24] is developing a suite of publicly reusable infrastructure to support the creation of

new forecast and scenario modelling hub collaborations.
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Challenges to collaborative modelling

While opportunities are well recognised, there has been relatively little analysis of the

challenges of model comparison and combination work. It is likely that collaborative work

involves both challenges and trade-offs. Evaluating evidence across multiple models requires

considerable care [27]: for example, quantitatively similar modelling outcomes could arise from

very different underlying assumptions about epidemiological mechanisms, invalidating their

comparison [6]. At the same time, collaborative structures may raise new operational and ethical

concerns compared to individual modelling for policy. These should be recognised and justified.

This work and commentary attempts to identify some of these challenges, focussing on the

credibility of model combinations while expanding to the relevance and legitimacy of

collaborative structures. The work presented here draws from three contrasting outbreak

modelling collaborations responding to COVID-19 in the UK and Europe.

The Scientific Pandemic Influenza Group on Modelling-Operational (SPI-M)

In January 2020, the UK’s Scientific Advisory Group for Emergencies (SAGE) was activated to

support the government response to COVID-19. SAGE drew on multiple forms of scientific

advice, including modelling work from its SPI-M sub-group, formally established in response to

2009 H1N1 influenza. From January 2020 through 2022, SPI-M met at least weekly. It is chaired

by policy and academic co-leads with modellers invited to contribute. Membership varied, but

expanded to around 70 contributors over time. Much early work included estimating key

epidemiological parameters, with weekly consensus estimates of the growth rate and the

reproduction number. SPI-M also produced short and medium term projections and responded

to specific policy questions [40].

The European COVID-19 Forecast Hub

From late 2020, the European Centre for Disease Control and Prevention (ECDC)

commissioned our team to lead scientific and technical development of a European COVID-19

Forecast Hub. The Hub collated and combined 1-4 week forecasts of COVID-19 for cases,

deaths, and hospital admissions, for 32 countries across Europe. Up to 48 independent

modelling teams contributed weekly forecasts, although this varied over time and by forecast

target, and we held a weekly open exchange via videoconference among all Hub participants,

including the ECDC. Forecasts were combined into a single ensemble projection, and all
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forecasts were published in an publicly accessible online platform for forecast comparison,

visualisation, and evaluation. This structure drew on similar Forecast Hubs established for the

US [34], and Germany and Poland [48].

The European COVID-19 Scenario Hub

From March 2022, the ECDC similarly commissioned the development of the European

COVID-19 Scenario Hub. This supported the ECDC to explore European policy interventions,

such as targeted vaccine distribution. The Scenario Hub attempted to adopt a more intensively

collaborative style of expert elicitation, modelled on similar work in the US [49]. In setting

scenarios, we aimed to explore the relative impact of varying policy options, while expressing

the wide range of plausible epidemiological uncertainty driving COVID-19. Twelve teams

collaborated to co-create six sets of scenarios. Projections for each scenario were visualised

and compared alongside a narrative interpretation of policy implications. This focussed on

highlighting differences between models, such as between underlying assumptions, and

interpreting across sources of uncertainty.

Research objectives

This PhD by publication addresses the overarching aim of evaluating collaborative outbreak

modelling, focussing on tensions and trade-offs in collaborative model combination. In this

thesis, these are associated with four papers representing four phases of outbreak response:

from outbreak investigation, short-term forecasting, long-term scenario planning, to

post-outbreak capacity building.

The remainder of this work presents a critical commentary discussing four selected papers in

terms of their development and original contribution, placing this in the context of the wider field

and further work. A concluding evaluation draws out common themes across the work.

Overview of the thesis

Outbreak investigation depends on accurate understanding of current epidemic transmission,

but this is difficult given lagged and biased real-time data. This is often addressed by estimating

the time-varying reproduction number (Rt), a key contribution of SPI-M. In a first piece of work, I

identified the potential for comparing estimates of Rt to provide insight into policy-relevant

transmission dynamics, while suggesting the potential for bias in comparisons between multiple
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models. A further discussion interprets this result in light of methods and context for real-time Rt

estimation, and SPI-M’s use of comparison and combination of Rt estimates for policy.

Short-term forecasting is useful for operational planning and situational awareness and may be

sought after by a diverse range of users and decision makers. The second research work

evaluated the ensemble combination of forecasting models contributed to the European

COVID-19 Forecast Hub, finding increased predictive accuracy of this combination compared to

the set of individual component models. This is discussed in light of challenges interpreting an

ensemble made against multiple epidemiological targets with a changing and unclear sample of

models.

In contrast, decision makers focussed on long term planning require an understanding of

options for policy intervention, for which scenario modelling can be used. A third paper

described identifying policy needs and producing appropriate model combinations to support

them, given high within- and between-model uncertainty. The commentary sets this in context of

how collaborations may respond to stakeholder needs to control, expand, and contract

representations of uncertainty.

Finally, post-outbreak evaluations often suggest the need for building modelling capacity. A

fourth piece of work explored the longer term sustainability of collaborative outbreak response

work, bringing together a diverse range of modellers’ experiences contributing to SPI-M. This

work is discussed in the context of continued calls for improvements across the field of outbreak

modelling, and the potential for bias in the process of post-outbreak evaluation.

A concluding evaluation draws out common themes throughout this work. This focuses on

challenges and trade-offs in collaborative outbreak modelling and multi-model combination,

before suggesting opportunities to both explore and resolve tensions in collaborative outbreak

modelling.
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Critical commentary

Contextualising comparisons of the real-time reproduction number

This commentary addresses the paper: “Exploring surveillance data biases when estimating the

reproduction number: with insights into subpopulation transmission of COVID-19 in England”.

Development of the work

The time-varying reproduction number (Rt) is a summary measure of infectious disease

transmission over time, representing the average number of expected secondary cases from a

single infectious individual under current conditions [50]. Rt estimates are useful for

characterising and tracking the underlying epidemic transmission process, in contrast to lagged

and biased trends in epidemiological data [51]. Rt became a central focus of the UK’s response

to COVID-19 [52], and a key task of the modelling advisory group SPI-M, published weekly as a

“consensus range” [53]. Meanwhile, Rt estimates are highly variable due to both heterogeneous

transmission, and a diversity of methods for estimation [50].

This work originated in real-time response providing Rt estimates to SPI-M from March 2020.

We noted that estimates showed differing results based on data source, both within our own

model and across models contributing to SPI-M [54]. We used three sources of data to estimate

Rt: COVID-19 positive test results; hospitalisations; and deaths. We estimated separate delay

distributions for these data sources, and used a renewal equation based approach to estimate

Rt [55]. Assuming homogeneous transmission, the resulting Rt estimates should be essentially

the same as they track back to the same data generating process.

We hypothesised that the observed differences in Rt between data sources were a meaningful

indication of variable transmission patterns between different source populations for surveillance

data. While data from test-positive cases represented all those presenting at a test centre,

hospitalisation and death data drew from populations at risk of severe disease. Crucially, this

risk was not homogeneous distributed across the population, for example with age as a key

determinant of severity. We suggested that when each data source was biased in this way,

tracking differences in Rt could be a real-time indicator of differences in subpopulation

transmission, for example identifying outbreaks among residential care settings. This also

challenged SPI-M’s contemporary use of a model combination, suggesting that this was

unrepresentative of any underlying transmission process.
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Individual contribution

Development of the Rt estimation and forecasting procedure using EpiNow and EpiNow2 was

led by Sam Abbott and Sebastian Funk. I initially contributed data cleaning, processing, and

analysis for UK and global surveillance data. I also supported running the end to end Rt

estimation pipeline for regular SPI-M submission, and contributed to model development with

testing, evaluation, and documentation. In May 2020, I worked together with Sam Abbott and

Sebastian Funk on the initial hypothesis of exploring differences in Rt estimation by data source.

I led work to develop this idea into this analysis, including developing code to run the Rt

estimation pipeline using each data source and visualising the comparative results. I also led

the write up of this into a short briefing note, presented to SPI-M first in early June and in three

further iterations.

I then led work to develop this into a paper. I developed the original work by using public data

for estimating delay distributions, in order for all work to be presented in the public domain. I

also designed and conducted further analysis to quantify the comparisons of Rt estimates, for

example assessing peaks and wave durations. The specific further hypotheses for

retrospectively understanding differences between Rt estimates over time were discussed jointly

with Sam Abbott and Sebastian Funk, in turn drawing on wider discussions among SPI-M. I led

work to source relevant data and formally add comparisons with these additional data sources,

for example data on deaths in residential facilities. I led the initial and subsequent drafts of the

paper. Sam Abbott and Sebastian Funk provided supervision and review before submission for

peer review. All code contributions are documented on Github:

https://github.com/epiforecasts/rt-comparison-uk-public.

Themes and context

Comparing real-time Rt estimates

By building on carefully standardised real-time Rt estimates, this paper suggested the role of

comparison across multiple estimates to provide additional epidemiological insights. Exploring

comparisons between models was a crucial element of the SPI-M collaboration [12]. However,

comparisons of Rt estimates can be difficult to interpret due to the number and diversity of

analytical choices involved [56]. Methodological choices include, among many others, the

definition of Rt itself, in whether it estimates forward-looking or backward (instantaneous)

transmission from an infection [50]; the timescale over which Rt is estimated; data
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pre-processing; or the parameterisation of the generation time, incubation period, and reporting

delays [56,57]. Many of these choices varied among SPI-M models of Rt [53].

Making valid comparisons among Rt estimates is a particular challenge during real-time

response because estimation must account for multiple biases and lags in real-time data. For

example, in this work we specified separate delay distributions to account for the lag between

transmission and reporting a test-positive case, versus hospitalisation or death. Misspecifying

these delays could have explained some of the differences we observed in Rt between data

sources.

The extent of this issue is such that the uncertainty around a real-time Rt estimate may not

contain the revised, corrected estimate even after complete data are available [56]. In addition

to epidemiological delays, Rt estimation must also account for reporting effects in the

observation process, including interval censoring, right truncation, and dynamic bias depending

on epidemic phase [51]. In continuing to develop the model used in this paper, recent work has

developed new methods to better account for these problems, for example allowing for a

changing distribution of reporting delays over time [58]. This is an active area of further

research, with an emerging consensus on how best to account for these issues [59,60].

Contextualising real-time Rt estimates

After comparison, the ability to draw insight relies on interpreting the contextual relevance and

meaning of any differences. In this work, we relied on highly contextualised knowledge about

the spatiotemporal dynamics of vulnerability in the UK epidemic. This led us to triangulate our

hypotheses with a range of alternative data sources, including test positivity, patient

demographics, and data from care homes, as well as knowledge of targeted testing sites and

restrictions. This was supported by SPI-M discussions of the difference in Rt estimates between

cases and hospital admissions, which suggested different explanations: first considering

localised transmission clusters in hospitals before those in long term residential facilities.

Explaining differences between Rt estimates is likely to be challenging in real-time when

alternative data sources may be unavailable and contextual knowledge may be limited. This

issue complements calls for disaggregated, timely, and accessible data sources during novel

outbreaks [61] [62]. For example, in this work data used on deaths from care homes was

confidential until long after the first epidemic among this population had peaked [63]. The

availability of such disaggregated data may not be replicable in future outbreaks or in settings
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with fewer resources for data collection [15,64], while processing such data can require

substantial infrastructure [65].

The challenge of triangulating real-time Rt estimates with contextual knowledge suggests a

useful role for collaboration. Contextualising model outputs was a central function of SPI-M,

where weekly meetings brought modellers together in moderated discussion [12,66]. However,

this process relies on the diversity, quality, and management of participants in the collaboration,

while avoiding “groupthink” [27]. Concerns with fairly balancing across collaborators may have

contributed to the production of combined Rt estimates across data sources when this was

known to be epidemiologically incoherent [67].

Combining Rt estimates

Our approach to comparison of Rt estimates contrasted with SPI-M’s approach to reporting a

single combined estimate across multiple models. Over 2020 to 2021, ten SPI-M modelling

groups estimated Rt, using a variety of model structures and assumptions for key parameters.

Estimates across all models were combined with equal weighting in a random effects meta

analysis [35]. Individual and combined estimates were discussed at weekly SPI-M meetings,

and the consensus range of Rt estimates was agreed and published alongside a narrative

summary of discussion [53].

This approach reflected a view of uncertainty where each individual model captured some

aspect of a single underlying Rt value, with uncertainty about the most appropriate model

framework, parameterisation, or data source to use for estimation [53]. Combining uncertainty

across multiple models was therefore seen as increasing the robustness of evidence [66,67]. A

justification for this view might be that different methods for Rt estimation are not easy to

evaluate. Since it is an unobserved quantity, there is no objective method for assessing the

accuracy of different Rt estimates in real-time. Methods for evaluation such as simulation studies

or comparisons to Rt estimates from gold standard data (e.g. seroprevalence studies) are

challenged by real-world validity and availability at the pace of real-time response [62].

On the other hand, the combined estimate represented an average across all modelling

assumptions and methodologies. This loses the ability to link estimates to key epidemiological

assumptions, and may mischaracterise sources of uncertainty [57]. This work demonstrated one

aspect of this, with misspecification to heterogeneous transmission patterns between data

sources. Further differences are also important. For example, combination using meta analysis
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could not account for dependency between models in fitting to the same inputs [68]. In

particular, the generation time [69] is a key quantity in many models underpinning how the

reproduction number relates to the speed of transmission, represented by the growth rate. With

many different options for parameterising the generation time, this can produce Rt estimates that

are inconsistent [70,71] and overconfident [57].

Following the work presented here, better understanding sources of variation between

estimates may make it possible to interpret apparently conflicting estimates of Rt. Further work

has characterised methodological differences in Rt estimation [50], and explored its impact. For

example, one study systematically explored the effect of methodological differences among

multiple models of Rt in Germany [56]. This progressively created increasingly aligned estimates

from different models by adapting each model’s estimation system to use a standardised choice

among a set of common methodological differences. The most substantial source of differences

was in the choice of generation time distribution, and estimation window size. Further influential

choices were standardising the temporal shifts of incubation period, and accounting for reporting

delays. Reconciling across these methodological differences was able to produce more closely

similar estimates.

This process of methodological reconciliation suggests the possibility for more meaningful

combinations of Rt estimates. Pre-specifying and standardising data sources and model

paramaterisations across models before combination would ensure the consistency of key

assumptions and treatment of uncertainties underlying combined estimates. One step towards

this might include creating shared references for best practices, or databases of relevant

parameters, to enable standardisation across multiple models. For example, work is underway

identifying best practices in delay estimation [59,72], or key parameters for the nine WHO

blue-print priority pathogens [73–75]. Work could also explore more epidemiologically informed

methods for model combination. For example, one study separately pooled information on the

generation time distribution and exponential growth rate, before combining models hierarchically

[57]. From a wider perspective, this requires an approach to model building that follows

principles of interoperability: developing model estimation systems that are modular,

reproducible, and robust to being used and repurposed [68].

Summary

In this paper, we focussed on comparing and contextualising real-time Rt estimation across data

sources, showing the potential for comparison as a source of early insight into heterogeneous
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epidemiological dynamics. This faced the difficulties of interpreting limited and biased real-time

outbreak data, in both estimating Rt and in interpreting resulting transmission estimates. Further

work has continued to improve methods specific to real-time estimation, and considered the

availability of outbreak data to interpret differences as they are observed. Second, this work

suggested that the combination of Rt estimates based on multiple data sources could produce a

misspecified or epidemiologically incoherent estimate. Further work has evaluated across

multiple sources of differences in Rt estimates, and suggested directions for the appropriate use

of comparative or combined Rt estimates, with a promising approach from modularised model

development.
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Interpreting accuracy in evaluating multi-model ensemble forecasts

This commentary addresses the paper: “Predictive performance of multi-model ensemble

forecasts of COVID-19 across European nations”.

Development of the work

Epidemic forecasting is a useful tool for supporting current situational awareness and short-term

resource planning for outbreak control. Many models may produce forecasts, and these can be

combined into a single ensemble projection. This practice is supported by the finding that

ensemble forecasts are on average more accurate in predicting future observations than

individual models. This result has been noted since the 1960s [31], both across fields [32] and

repeatedly observed in outbreak forecasting [30].

From 2021, the primary output of the European Forecast Hub was the creation of an ensemble

model producing prospective real-time forecasts each week. The ensemble took the median

average across multiple models’ probabilistic quantile intervals to produce a combined

probabilistic projection. The central contribution of this work was to characterise the

performance of the ensemble forecast against observed data across multiple forecast targets.

Complementing existing work, we found the Hub ensemble more robust in providing

consistently strong forecast accuracy than any individual component model. A secondary

contribution was to compare weighted and unweighted mean and median combinations. We

found the strongest performance from an unweighted median. This agreed with a history of

mixed successes in finding a better performing alternative to simple ensemble methods [76–78].

Individual contribution

My contribution to this work was twofold. Firstly, from January 2021 I jointly developed, built, and

maintained the infrastructure for the European COVID-19 Forecast Hub, together with

Sebastian Funk, Johannes Bracher, Hugo Gruson, and many collaborators. I led the adaptation

of code for forecast processing and validation; data sourcing, processing, and validation; all

documentation; and the initial ensemble. I also contributed code for the forecast evaluation

procedures. This drew on existing software from both the US and Germany/Poland COVID-19

Forecast Hubs, and was planned and reviewed jointly with Sebastian Funk. From March 2021, I

led work supporting forecasters to contribute to the Hub, and continuously maintained the

weekly updating of data sources, forecasts, ensemble, and evaluation.
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Second, I led work developing this paper focussing on the performance of the resulting Hub

ensemble. I led this work from conceptualisation to analysis and drafting, with supervision by

Sebastian Funk. I designed the plan for this work and developed all code to conduct analysis,

including accessing forecasts, observed data, and evaluation scores; descriptive summaries of

individual model and ensemble performance; and visualisations. Sebastian Funk contributed

code for weighted ensembles and their evaluation. I wrote the first and subsequent drafts of the

paper. We invited initial feedback from collaborators at the ECDC and in Germany, and a further

round of review from all individuals who were named in metadata of the forecasts contributed to

the Hub, who had therefore contributed component forecasts to the ensemble. I led work on all

subsequent drafts, submission for peer review, and revisions. Code contributions are

documented on Github: https://github.com/epiforecasts/euro-hub-ensemble.

Themes and context

Evaluating ensemble performance

A key challenge in developing this work was evaluating an ensemble across widely varying

epidemiological targets from an uneven sample of models. To present a single evaluation, we

needed to aggregate across differing magnitudes of epidemiological targets between countries,

and the number of forecasters and forecasts contributed for each target. This contrasted with

evaluations of Hubs such as the US or that for Germany and Poland, which were able to focus

on reporting performance against a national level target for which most models contributed

[34,45,79].

In this work, we approached this by using a pairwise comparison of the weighted interval score

(relative WIS) [80]. The WIS represents both accuracy against an observed data point, with

probabilistic precision (sharpness). The relative WIS mitigates the challenge of unequal

contributions between forecasting models, by allowing a pairwise comparison between

individual models. We compared against a baseline forecast that assumes no change with

expanding uncertainty. At the time, this relative use was a newer development in evaluating

probabilistic predictions, and this paper contributed to applying this method in practice. The

relative WIS has been adopted in subsequent evaluations of collaborative modelling projects,

including US and European nowcasting, forecasting, and scenario projections [45,81,82].

The wider context for this work is the fundamental challenge of understanding the

generalisability of ensemble performance.
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Relating ensemble performance to real-time epidemiological dynamics

By summarising performance relatively, our evaluation obscured the epidemiological conditions

of forecast performance. In this work, we found that performance was more stable over a longer

time horizon for forecasts of deaths compared to cases, and suggested this was due to longer

lags and fewer fluctuations in the observation process. However, beyond this finding we did not

quantify accuracy in epidemiological terms and were limited to qualitative observations of poorer

performance around local peaks and new variant introductions.

This meant we were unable to specify when over the course of an outbreak an ensemble is the

most appropriate choice of forecast [83]. On the other hand, assessing prospective forecasts

against retrospectively identified characteristics of the forecast target risks biassing evaluation

(the “forecaster’s dilemma”) [84]. For example, assessing models by performance at the start of

an uncontrolled outbreak that later causes a large epidemic would overly reward those that

always predict exponential growth.

A more principled strategy to relate forecast performance to epidemiological dynamics might be

to use an evaluation metric that better captures the data generating process. Since this paper

was written, it has been suggested that the underlying comparison of a forecast to data should

be assessed on the logarithmic scale [85]. Using a log transformation is closer to assessing

forecast accuracy in terms of the time-varying epidemic growth rate, where forecasts are

targeting an underlying exponential process. Meanwhile, further analysis found that using the

log transformation did not change the direction of our result demonstrating outperformance of

the European Hub ensemble [85]. This may be a more useful way to rank among forecasting

models, depending on the needs and expectations of forecast users.

Recent work has also explored adapting methods for forecast evaluation based on relevance to

forecast user needs. For example, alternative evaluation methods may summarise forecast

performance relative to a specific policy context, including against resource allocation needs

[86], or a user-defined threshold for the forecasted target [87]. However, defining the utility of a

forecast requires clear decision points, and opportunity for interaction between modellers and

stakeholders. Furthermore, defining a utility threshold runs into the issue of propriety (the ability

to “game” the forecast score), so unlike using a transformation, these methods may be more

suitable for retrospective evaluations.
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We have also explored a reverse-engineering approach to understanding the epidemiological

context of ensemble outperformance. We identified six aspects of ensemble performance, and

incorporated these into a model with known assumptions about epidemiological dynamics [88].

For example, we observed that the Hub ensemble reacted slowly but accurately when a trend

turned towards stability; we replicated this by including a multiplicative decay parameter. We

evaluated this “surrogate” model’s forecasts, finding qualitatively similar behaviour to the Hub

ensemble, although with increased uncertainty and poorer performance around periods of peak

incidence. This work suggested the possibility that the performance of the ensemble could be at

least partly replicated using a simpler, epidemiologically interpretable method.

Relating ensemble performance to component models

While we found that in aggregate across forecast targets an ensemble was the most frequent

top performer, we did not investigate ensemble composition to identify the reasons behind its

performance. The ensemble was “opportunistic” [89], drawing from an uneven sample of

contributing models’ forecasts and with little information about model characteristics. Better

understanding the composition of the ensemble would support the interpretation of its

performance. This is a focus of current in-progress work.

First, evaluating ensemble performance with varying numbers of model components could

indicate the impact of sample size. Work analysing US influenza and COVID-19 forecasts has

characterised this [82]. This found that among a random selection of models, including more

models improved ensemble performance, particularly by decreasing the variability of ensemble

performance. We are conducting similar analyses of the European Hub, with compatible early

findings that increasing the sample size of models improves performance.

Secondly, an ensemble may be composed of many modelling approaches and methodological

strategies for forecasting. Forecasters vary widely in modelling approaches, with more or less

ability to tune models to specific targets. Past work has suggested little difference between

forecast performance from differing methodological types [13,36]. In further in-progress work,

we classify European Hub models by methodological structure and the target specificity of the

forecasting model, and model the impact on the interval score. This could suggest differences

among forecast methodologies, which future collaborative efforts may consider in recruiting for

and interpreting resulting ensembles.
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Enabling forecast evaluation

More generally, the standardisation and scale of Modelling Hubs creates a valuable opportunity

for systematic evaluations among multiple modelling methods. For example, data from previous

collaborative Hubs in the US continues to be re-analysed in recent work assessing individual

models and ensemble techniques [82,90] or using new methods of evaluation [86,87]. An

important aim of the Forecast Hub was for its data to be re-used in independent analyses of

epidemiological forecast skill.

However, such evaluation relies on transparent, ideally reproducible modelling methods being

documented alongside model outputs. In the European Forecast Hub, model metadata was

limited to authorship and a brief voluntary description of methods, leaving forecasting models as

essentially “black boxes”. This meant that in further work we could only link forecast

performance to two simplified aspects of component models. More detailed evaluations

currently rely on published papers as the most extensive form of model documentation,

adopting a systematic review process to classify reported methods [18,91]. However, this is

subject to publication bias and poor reporting practices [92].

One best practice for reporting modelling work is provided by the EPIFORGE 2020 guidelines

for reporting model projections. While designed for forecasting models, this is generally

applicable to modelling. The guidelines cover documentation of: data sources, availability, and

processing; methods, assumptions, and code; model validation and forecast evaluation; and

interpretation of uncertainty, limitations, and generalisability. These guidelines could be adopted

by collaborative modelling efforts in their process of collecting metadata. A stronger approach

would be for modelling Hubs to adopt the Findable, Accessible, Interoperable, and Reusable

(FAIR) principles across contributed models themselves, including model metadata. This follows

the example of systems biology, where models are encoded, published, exchanged, and

annotated with highly detailed and structured metadata [93].

Collecting better metadata would enable higher quality retrospective evaluations to draw deeper

learnings across the field, and could support model users to interpret across multiple models in

real-time. It is important to collect this prospectively, given each team’s methods can change

over time and to avoid biases from retrospective data collection. Supporting modellers to use

the more detailed guidelines or share code would also make use of the high profile of modelling

collaborations to promote a best practice in the field more widely. While this entails time

investment to document models, this could be mitigated by ensuring model documentation is
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easy to contribute, for example designing metadata templates based on the EPIFORGE

guidelines with standardised options wherever possible.

Summary

This commentary discussed the evaluation of short-term ensemble forecasts, emphasising the

challenges of interpreting underlying epidemiological dynamics and component models. Future

directions included assessing more epidemiologically relevant methods for evaluation and

model selection, and supporting best practices in model documentation to enable more detailed

forecast evaluation.
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Structuring information and uncertainty among multi-model scenarios

This commentary addresses the paper: “Characterising information gains and losses when

collecting multiple epidemic model outputs”.

Development of the work

Scenario models are an essential method for accounting for uncertainty while demonstrating the

effects of manipulating different variables in a system. COVID-19 saw a proliferation of such

modelling exploring both epidemiological and policy interventions influencing health outcomes

[94]. Some collaborative work specifically focussed on structuring models’ representation of

uncertainty for decision support [21].

In March 2022, the European COVID-19 Scenario Hub was launched to support the ECDC to

explore uncertainty in scenarios for European epidemiology and intervention. The Hub

supported 12 teams to collaborate with the ECDC to co-create several rounds of scenarios that

reflected both scientific uncertainty and policy options for COVID-19 control. In this paper, we

aimed to understand the potential for information gains and losses when collecting results from

multiple scenario models.

This paper was developed after noticing greater differences in results between models than

between different scenarios. In the pilot round of the Hub, we wished to explore each model’s

probabilistic distribution in more detail. However, we were frustrated in this aim by our method of

collecting scenario projections summarised by quantile. From Round 1 of the European

Scenario Hub, we instead asked modellers to submit up to 100 simulations of equal probability.

This study was motivated by exploring both the policy impact and scientific potential of this

choice, while it pointed towards wider challenges of handling and representing uncertainty in

scenario modelling work.

Individual contribution

I first contributed building and maintaining the European Scenario Hub infrastructure. My work

included adapting and developing software for collecting, validating, and visualising scenario

projections, and producing all documentation. This was supported by Hugo Gruson with

supervision from Sebastian Funk and collaboration with the US Scenario Hub. During the

project, I led four rounds of collaborative scenario modelling. I facilitated stakeholder workshops
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to codesign scenarios, and designed procedures for collecting metadata, visualising, and

narratively synthesising results from the scenario projections.

For this paper, I conceived and conducted the research questions and conducted all analysis,

visualisations, and drafting, supervised by Sebastian Funk. First, I led work analysing

trajectories for policy relevant characteristics, including writing code and creating visualisations,

as part of the development of the Scenario Hub. This aspect of the work was also reviewed by

the team at the ECDC. Second, I planned and conducted all analysis and visualisation for work

comparing an ensemble from trajectories to the Vincentised ensemble from quantile summaries.

In later drafts I added the Linear Opinion Pool ensemble, drawing on code developed by Emily

Howerton and Evan Ray. The third aspect of this work was to ensemble scenario trajectories

using a weighting procedure based on ongoing evaluation against observed data. I developed

all code and visualisation. I led all draft writing, revisions, and paper management. We sought

review from all those who had contributed to the Scenario Hub before submission for peer

review. Code contributions are at: https://github.com/epiforecasts/multi-model-information.

Themes and context

Identifying policy relevant information

Our work first demonstrated that understanding decision objectives changed the fundamental

method of collaborative data collection. This produced information that was both more credible,

by creating a more robust visualisation, combination, and assessment of individual trajectories;

and more relevant, by using trajectories to show a different set of epidemic characteristics

[25,95]. For example, assessing thresholds for outbreak size was a particular concern of the

ECDC, which could not be robustly analysed from collecting model quantiles. We noted that

while this difference was well recognised informally, there was relatively little note of it in the

scientific record. We therefore aimed to add our experience in adapting model collection to

maximise policy relevance. This work also supported the development of the US Scenario Hub

to similarly collect and analyse modelled trajectories.

This echoes methods for participatory modelling, in which the modelling process is integrated

with stakeholder feedback and understanding the decision points for which model outputs are

relevant [16,96,97]. Similarly, a growing body of work is now formalising methods for decision

support throughout the process of real-time epidemiological modelling. This has focussed on
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comparative analysis of multi-model projections in scenario design [98]. A consistent emphasis

across this literature is on prospectively identifying decision-maker goals and priorities [99].

In the wider context of the European Scenario Hub, this element of the work could have been

substantially improved. European policy making is distributed between transnational bodies,

such as the European Commission, and national public health agencies. Our process for

identifying stakeholder needs was based on unstructured input from a small technical group

within the ECDC, who were limited in their ability to identify, access, or engage with these

potential policy users. As a result, there was no direct exchange between the Scenario Hub

collaborators and the intended policy users. This compromised the Scenario Hub where

information was not tailored to the needs of any specific user or decision.

This mattered specifically for the Hub’s focus on evaluating interventions. Both the design of the

interventions themselves, and the credibility of model outputs, is dependent on correctly

capturing context-specific factors and priorities, such as intervention acceptability and feasibility

[98]. The challenge of identifying stakeholder needs could be mitigated by having a clearer

process for stakeholder mapping and engagement throughout collaborative work [22,45]. This

should both identify potential users of scenario modelling outputs and engage with their specific

information needs and priorities, such as which epidemic indicators are already in use for

planning health policies. This would ensure both scenario design and model output create

relevant, usable information.

Controlling for confounding

A central element of the Scenario Hub collaboration was assessing differences between multiple

scenarios. However, correctly understanding the uncertainty in these differences depends on

maintaining epidemiological consistency between models. This requires harmonising among

potentially conflicting assumptions within each model. For this we adopted a structure of expert

elicitation among participants to cover shared sources of uncertainty [10]. For example, we

aimed to identify where scenarios were likely to be confounded by additional epidemiological

dynamics, such as vaccine effectiveness, and find a shared consensus on how these should be

parameterised. This meant that resulting model comparisons should reflect “true” differences

between scenarios rather than between differences in model assumptions.

We used a facilitation process that emphasised equal contributions among participants, with the

explicit aim stated in each meeting to “share approaches, support other modellers, and discuss
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interpretations”. On the other hand, a risk of the group deliberation process was that of creating

excessive conformity, at the expense of individual modellers’ valid knowledge and beliefs

(groupthink) [100]. One strategy to handle this would be to include an additional stage of

independent work, including model development and testing, before further comparison

[10,27,101].

At the same time, it is unclear how effective our process was in balancing between

standardisation versus diversifying representations of uncertainty. To assess this, we also

collected detailed qualitative model metadata in each scenario round, asking for descriptions of

key assumptions with additional comments and interpretation of their impact on model outputs.

However, this was not further analysed due to limited time and resources between producing

multiple scenario rounds. Further work could consider formalising such retrospective evaluations

of confounding.

Expanding and reducing uncertainty: contrasting ensemble methods

This paper addressed a broader concern in the appropriate representation of uncertainty in

combining multiple model projections. Selecting among methods for quantitative combinations

involves a balance between accurately representing heterogeneity, versus precision. For

example, central estimates may be more relevant to the task of short-term prediction rather than

representing possible extremes relevant to long-term scenario planning [102].

With this study, we added the perspective of varying data collection before combination,

showing that collecting model trajectories retained the greatest degree of heterogeneity at the

point at which these were collected. We concluded that while central estimates of an ensemble

remained largely similar between ensembles from quantiles or trajectories, either ensembling

from trajectories or using a linear opinion pool (LOP) method of combination was important in

representing extreme values. This corresponded with parallel work comparing ensemble

methods from quantile model outputs in the US [103].

In a further contribution of this work, we started to explore the idea of reducing uncertainty by

evaluating individual trajectories as forecasts in a combined ensemble. Progressively comparing

these trajectories to observed data created an increasingly sharp consensus prediction, with

little loss to the accuracy of representing epidemiological context. To our knowledge this

conversion of scenario trajectories to forecasts among multiple models had not been previously

explored in a formal evaluation framework.
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This aspect of the work also contributed to a wider debate over the circumstances in which

future projections should be evaluated against observation. Any model that projects an

observable quantity can be held accountable to comparisons against observed data. Projections

identified as forecasts are explicitly offered to this account. However, this could be considered

inappropriate for scenario models exploring a range of possible futures rather than a single

outcome. Nonetheless, scenario projections are frequently evaluated against data

retrospectively, often qualitatively [104] and sometimes quantitatively [45,105]. For example,

work from the US Scenario Hub evaluated ensemble projections against a retrospective

assessment of the plausibility of a variety of scenarios over time, finding ensemble accuracy

was slightly increased under more plausible scenario assumptions [45]. Our work took this

approach further in suggesting a dynamic method for evaluating and combining model

trajectories prospectively, independently of their scenarios in real-time.

In contrast to this work, an alternative approach may reduce the representation of uncertainty

even further by presenting ordinal rankings among categorical scenario options. A set of related

work has shown that multiple models tend to agree on the ranking of different interventions,

even while disagreeing on the magnitude of projected outcomes [26,106]. This may have further

implications, for example that relatively few models would be needed in order to arrive at the

same recommendation for policy action. At the same time, the above argument for model

diversity suggests that an apparent agreement in rankings could be a function of the similarity of

model assumptions and approaches.

Further work could develop the method of comparing scenario rankings to ensure it is robust for

use. In addition to model similarity, agreement between ranks might also depend on the method

used for either measuring the level of agreement [26] or combining across rankings into a single

order [107]. It is also not clear at what level or on what scenario rankings should agree. The

level of possible agreement between models will differ based on the specific set of scenarios,

with more complex scenarios seeing less agreement. Model agreement may differ by the

outcome of interest, for example, minimising case incidence at the peak compared to final

epidemic size [26]. Promising areas for further work could include defining the size and structure

of component models to achieve a stable agreed ranking, as well as the appropriate decision

context and methods for ordering among scenarios.
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Summary

This work identified the importance of collecting and combining models in a way that is both

relevant to policy needs and appropriately represents heterogeneity within and between models.

This suggested a need for further work in stakeholder identification, as well as the challenge of

controlling for confounding among multiple models together with a consideration for methods of

combining and evaluating uncertainty in multi-model work.

30



Representing experiences of crisis response

This commentary addresses the paper: “Improving modelling for epidemic responses:

reflections from members of the UK infectious disease modelling community on their

experiences during the COVID-19 pandemic”.

Development of the work

The experiences of the modelling community throughout the COVID-19 pandemic highlighted

substantial challenges in the field, including psychological pressures, gaps in institutional

support, and systemic issues across the academic research landscape. This work was

motivated by experiencing these challenges and a shared commitment to improving future

response efforts. In this work, we focussed on the modelling community contributing to the UK

emergency response, largely channelled through SPI-M-O [40]. We aimed to explore the

diversity of responders’ experiences, having noted that contemporary evaluations may not

reflect the full range of contributions to modelling work.

This work originally developed as an informal survey among the modelling community, before

developing into a more structured workshop that could support a fuller and more collaborative

exploration of the issues. We then synthesised the experiences and recommendations

documented throughout the workshop, and invited all participants to collaborate on this paper.

This represented our consensus view of challenges in infrastructure for outbreak modelling and

a set of clear recommendations to make future outbreak response modelling more efficient,

ethical, and sustainable.

The main contribution of this work was its evaluation of epidemic response work in terms of

modelling capacity, together with the development of a set of actionable recommendations for

improving sustainability. A specifically novel aspect of this contribution was its inclusive

approach to representing and interpreting the experiences of a diverse set of participants across

the field of response work. This method contrasted with existing and contemporary evaluations,

while producing similar conclusions for necessary action to improve capacity.

Individual contribution

This work was developed in collaboration with Anna Carnegie (co-first author), Sam Abbott, and

Yang Liu. The original concept of surveying modellers involved in the UK COVID-19 response

was developed jointly and then led by Sam Abbott and Anna Carnegie. I provided feedback on
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the survey design, together with Yang Liu, and supported its promotion. We then jointly

designed the workshop, with implementation led by Sam Abbott and Anna Carnegie. I reviewed

this together with Yang Liu, participated in the workshop, and gathered materials after the

workshop completed. I then led on synthesising the experiences and recommendations

documented throughout. This was initially intended as a workshop report before developing

further into the academic output presented here.

In this phase of the work, I first led work gathering and digitising all workshop outputs, for

example notes, mind maps, and dot plots from the day, converting these into usable data. I then

led work ordering and synthesising these qualitative data into themes and recommendations,

with review and feedback from Anna Carnegia, Sam Abbott and Yang Liu. Anna Carnegie then

wrote an initial outline for a workshop report. I first reviewed this and then with joint agreement I

led work to draft an academic paper reporting our findings. I led on the development of this write

up, including the background, formalising the structure of the methods, writing the results and

discussion. I then managed several rounds of review from the core authorship group and those

who participated in the workshop.

Themes and context

Participatory post-crisis evaluation

Infectious disease outbreaks can occur with little warning and require rapid action to prevent an

exponential crisis. At the earliest stage, modelling may be the best, if not the only, decision

support tool, demanding modellers rapidly adapt methods to each outbreak’s novel

characteristics [1,12]. This “trial by fire” can identify a range of weaknesses and limitations with

available capacity for outbreak response, prompting retrospective evaluations aimed at

improving outbreak modelling [108]. In the UK, qualitative evaluations of COVID-19 modelling

have focussed on its role relative to crisis policymaking: for example, in the UK public COVID-19

Inquiry [109], or academic research [110–112]. In developing this work, we questioned whether

these evaluations could improve the field of modelling as a whole.

We particularly noted that evaluation exercises focussed on sampling from senior career stages

and traditional modelling work, poorly reflecting the diversity of experience among those who

contributed to the response. Scientific contributions to the response were both formal and

informal [113] and the composition of contributing modelling teams was highly variable between
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research groups and over time. Meanwhile, a diverse range of career levels and skill sets were

needed to create and support modelling work [40,65].

However, gathering these views is particularly challenged by accessibility and survivor bias. Not

all who contributed were acknowledged or publicly identified, and evaluations have relied on

recruiting more easily accessible individuals, typically also more senior: for example, by

surveying those on the public list of SAGE and SPI-M attendees [111]. While this sampling may

be useful for representing policy interaction, this does not represent the wider field of outbreak

modelling. Further, those with negative experiences are more likely to change fields, becoming

less easy to contact, or have less motivation to participate in an evaluation. At the same time,

we observed that negative experiences were differentiated by seniority, as early career

researchers and support staff (already more likely to be on short term contracts) left the field.

Both accessibility and survivor biases in sampling would likely influence any evaluation to

represent the status quo, missing opportunities to address issues experienced by the wider field

of contributors to modelling work.

In this work, we attempted to ensure that participants represented a range of experiences

contributing to the COVID-19 response. We targeted individuals across institutions, including a

range of UK universities and the UK public health agency (UKHSA), as well as across career

stages: from doctoral students relatively new to the field, to senior academics with long-standing

policy relationships. We attempted to address survivor bias by deliberately inviting participation

from those who had moved away from infectious disease modelling. Our efforts were only

partially successful, with several individuals unresponsive or unable to attend the workshop.

Future evaluations could develop the use of real-time methods for evaluating capacity during

outbreak response. Previous prospective evaluations of UK modelling were policy-oriented and

limited by the capacity and willingness of modellers to contribute to such evaluative research in

an ongoing crisis [111,112]. However, prospectively evaluating and reporting challenges in

modelling capacity across the field could provide immediate feedback to modelling teams and

collaborations. This could be used to rebalance capacity and preventatively address burnout,

and thereby improve both the quality of short-term response and long-term sustainability. This is

likely to be particularly relevant when the length of the crisis response is uncertain [12].
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Evaluating capacity for epidemic response

Our findings from this work complemented the body of both pre- and post-COVID-19 modelling

evaluations [108]. These suggest the intense resource requirements of contributing to

collaborative outbreak response. For example, the rapid pace of SPI-M policy interaction

created extreme pressure and substantial time away from ongoing research [12,113] while

modelling teams often reallocated all possible resources to voluntary response work [40].

This trade-off between time contributing to collaborative work versus long-term academic

commitments is a common feature of working at the science-policy interface [114,115]. This is

intensified in work which carries political and moral urgency, often resulting in individual burnout

[116]. In this work, these impacts were exacerbated by the unusually long period of crisis

response (2020-2022), together with highly varied and often unclear policy needs [112]. Our

work also demonstrated the differential impact of this trade-off by career stage and gender.

While appearing to be highly collaborative, science during COVID-19 may have been an

intensification of existing hierarchical structures [117], with similar differentials noted across

scientific fields [118] [119].

To address these issues, in this work we called for a stable “critical mass” of modelling

expertise, maintained at an institutional level independent of individual grant funding. In an

emergency, adapting existing structures is more efficient than creating new ones [113]; at the

same time, outbreaks are both unpredictable, and becoming more likely [120]. This makes it

crucial to create standing capacity for modelling work that can be rapidly and sustainably

deployed when needed. Similar calls to improve capacity have been made repeatedly across

evaluations of outbreak responses, for example after 2001 Foot and Mouth Disease [121], 2009

H1N1 [1], or 2014 Ebola [122,123]. Likewise, and as in our work, similar recommendations have

been repeated since COVID-19, with capacity constraints noted in at least western Europe

[124], Switzerland and Germany [125], Australia [126].

Despite the urgency and necessity of our and others’ recommendations, there is a notable gap

in translating them into actionable steps. This is likely due to the rapid onset of outbreaks

requiring immediate action, the subsequent focus on immediate crisis management, and the

lack of attention and resources when outbreaks are not in progress. Meanwhile, these

recommendations raise the question of exactly where and for what for what such capacity

should be created.

34



While modelling has traditionally been an academic pursuit, outbreak response involves a

constellation of actors, who all may draw on modelling work and therefore be implicated in calls

to increase capacity. For example, modelling pipelines involve many different tasks, skills, and

specialisms, of which only some intersect with traditional research [123]. This can make for an

unclear division of labour between the technical development and operational implementation of

modelling work [65,102]. For example, in the UK’s COVID-19 response various elements of

modelling pipelines used in policy shifted over time between the academic contributors to

SPI-M, the UK Health Security Agency, and the Joint Biosecurity Centre [66].

The need for such standing capacity has become more widely recognised amid a wave of

post-COVID-19 investment in modelling. There is some evidence that modelling roles have

been expanded into national public health rapid support teams in Canada [127], the UK [128]. In

the US, this has taken the form of a new unit within the US Centre for Disease Control, the

Centre for Forecasting Analytics; this was explicitly based on previous recommendations to

improve outbreak modelling [123,129]. At an international level, the WHO has invested in a Hub

for Pandemic and Epidemic Intelligence [46]. Meanwhile the “Hubverse” initiative aims to

facilitate standardised infrastructure to collect multiple model outputs [130].

However, it is unclear whether new capacity is appropriately or effectively allocated or across

needs for modelling for outbreak response. Firstly, it is not evident how new initiatives map to

existing recommendations, or whether proposed targets for improving modelling are clear,

quantifiable, and set independently from the institutions responsible for implementation. Further,

identifying and expanding capacity may be challenging in settings where modelling work is not

seen as a traditional part of outbreak response, for example in highly localised outbreaks [131].

We have started some further work to address this in a follow up to the work presented here.

This uses a repeated survey of the same set of workshop participants to explore how the

current landscape of outbreak modelling reflects the five priority recommendations and actions

suggested in the original workshop. While limited to our existing sample, from this work we hope

to identify potential current and future changes in outbreak modelling response work.

Summary

In this work, we explored issues in capacity for outbreak response using a participatory method.

Our inclusive approach to evaluation led to a broader reflection of the heterogeneous landscape

of modelling work, showing where this created unequal and inefficient impacts from the intensity
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of emergency response. While issues with modelling capacity during outbreak response have

been widely noted, efforts to address this remain potentially biased. Future work should support

ongoing evaluation of capacity using a prospective and participatory perspective.
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Evaluating collaborative modelling and multi-model combination

The works discussed in this thesis explored collaborative outbreak modelling across four

phases of outbreak response: from outbreak detection and investigation, through evaluating

short term forecasts, assessing outbreak control options with scenario modelling, and capacity

building from post-outbreak evaluation. This built on three modelling collaborations: the UK’s

SPI-M, and the European COVID-19 Forecast and Scenario Modelling Hubs. This concluding

discussion draws across this work to suggest common challenges, trade-offs, and future

directions for the use of model combinations arising from collaborative outbreak modelling.

Challenges

Outbreak response relies on understanding rapidly changing epidemic dynamics. Model

combinations offer a focal point for this understanding, by synthesising multiple expert insights

into a single estimate to be used for planning and action. However, this work repeatedly

challenged the practice of aggregating across models with the need for their epidemiological

interpretation.

The key challenge for modelling collaborations is their vulnerability to selection effects in the

sample of component models. The ability to interpret results from a model combination depends

on the validity of epidemiological mechanisms driving its component models. However, the

complexity of epidemic dynamics creates both structural and parametric uncertainty in these

mechanisms. This allows for a wide range of plausible assumptions and methods in the

modelling process. To retain validity, a model combination should sample across this

heterogeneity systematically.

However, modelling collaborations typically recruit modellers opportunistically [89], without a

pre-specified sampling strategy to account for either the diversity or quality of modelling

representations of the target quantity. For example, recruitment may come from existing

networks of expertise, with self-selected voluntary participation that fluctuates over time. This

opportunistic sampling of model components leaves model combinations open to both bias and

confounding. This can affect the validity as well as reliability of resulting estimates. This tension

underpinned the collaborations discussed here, where such threats to epidemiological validity

played out in different ways across different modelling tasks (table 1).
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Table 1. Factors affecting the epidemiological interpretation of model combinations across three

outbreak modelling collaborations represented in this work.

Sample Model
harmonisation

Published
combination

Epidemiological
interpretation

UK SPI-M: Rt
estimation

Aim: Characterise
current state of
UK transmission

Selective, by
invitation
from chair

Informal:
unstructured
discussion including
comparison of
model design

Consensus
range of
numerical
estimates from
meta-analysis,
plus narrative
synthesis

Likely confounded by
incompatible use of
data sources, creating
estimates not
representative of any
single transmission
process.

European
COVID-19
Forecast Hub

Aim: Predict 1-4
weeks’ observed
cases and deaths

Open call None. Model
documentation
included voluntary
method description.

Probabilistic
quantile
projection
based on
median
ensemble

Typically greater
predictive accuracy
compared to individual
models, but no ability
to interpret
mechanisms driving
this outperformance.

European
COVID-19
Scenario Hub

Aim: Demonstrate
differences
between policy
scenarios

Open call Semi-structured
discussion of shared
parameters,
resulting in shared
quantitative
parameter values,
then documented in
metadata.

Narrative
synthesis with
comparative
visualisations

Variability within and
between models
obscured differences
between scenarios,
suggesting
uncontrolled
confounding and/or
structural uncertainty.
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Firstly, model combinations may be biased at the level of component models. At a theoretical

level, model combinations can provide at most a lower bound on the uncertainty of the target

quantity. This is because it is inherently unknown whether such an opportunistic sample

captures the full range of structural uncertainty [132]. Similarly, opportunistic recruitment creates

potential for bias in resulting model combinations. For example, where recruitment comes from

an existing network sharing similar expertise, a model combination can only reflect this shared

view of epidemiological dynamics. A particular example is where collaborations recruit from

modelling expertise alone, even while modelling might draw on evidence from multiple

disciplines: from within-host immunological dynamics to the social acceptability of interventions

[133–135].

Secondly, model combinations may be biased at the level of model parameterisation. Model

combinations aim to capture across the range of uncertainty expressed by equally valid

parameterisations between models. At the same time, this may be confounded by heterogeneity

in underlying epidemic dynamics. For example, aggregating across models that draw from

multiple source populations with differing transmission patterns may confound a resulting

combined estimate. This risks biassing a combined estimate, making it less accurate than any

individual model representing homogenous epidemiological dynamics.

One strategy to control for such confounding involves harmonising across potentially conflicting

model parameterisations. This process attempts to identify the wider epidemiological context of

the target quantity, and control model parameters that may confound a resulting combined

estimate: for example, vaccine efficacy in comparing interventions for vaccine coverage [136],

or the generation time in estimates of the reproduction number [57]. Harmonisation might be

achieved by a process of expert elicitation among modelling collaborators [27], or by adapting

interoperable and modularised model code [56]. At the same time, harmonisation is challenged

by the risk of “groupthink'', against the competing need to maintain modellers’ independence

where there are multiple plausible assumptions [21].

Assessing the epidemiological validity of any model combination is critical to evaluating its role

in decision support. At the same time, these issues are exacerbated when model combinations

are repeated over time with fluctuating component models, for example in a longitudinal

ensemble forecast. In this case, a superficially stable model combination may be fundamentally

unreliable, and become more or less biased or confounded over time. Meanwhile, it is often

difficult to assess these issues at all: for example, in large open call collaborations, model
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outputs may be often collected with minimal associated metadata and little interaction among

modellers. These issues with internal validity and reliability create additional uncertainty in how

supportive a model combination can be for outbreak decision making.

This challenge to decision support can be widened further to the targets and process of model

combination itself. Any model combination must be both appropriate and timely to be relevant.

In order to standardise across multiple models, collaborations must collect and present results

from a small set of pre-specified quantitative targets. However, both the scientific and policy

realities of an emerging outbreak evolve quickly, creating constant potential for misalignment

between modelling work and stakeholder needs [22]. For example, possible decision targets

might include assessing risk factors and response needs, involving both continuous and

categorical outcomes, such as thresholds with some degree of tolerance [102,131,137].

Collaborations may struggle to keep pace with this demand, given the need to adapt both

contributing models and supporting infrastructure to create model combinations for different

targets.

A final challenge to the use of model combination is by comparison to the decision support

provided by an individual model. Stakeholders may gain the most benefit when modelling is

simple and offers a narrative bridge between theory and practice, such as offering heuristic

demonstrations of counterintuitive relationships or exploring a model’s parameters and

uncertainties [131,138,139]. Individual modellers can offer this opportunity, for example via

discussion [96] or interactive tools [140]. By contrast, modelling collaborations add a mediating

layer between modellers and stakeholders, potentially slowing this process and making it more

difficult to offer this exploratory form of decision support.

Trade-offs

This discussion has raised the possibility of several trade-offs in collaborative outbreak

modelling and the production of model combinations. A focus among the work presented here is

balancing between creating the clarity of consensus, versus communicating the complexity of

epidemic dynamics to model stakeholders; and the need for consistency among components of

a model combination, versus drawing on the limited capacity of modelling collaborators.
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Context/consensus

A central offer of collaborative work is to create a consensus, offering clarity and simplicity for

decision support. However, in synthesising across multiple models, collaborative projects may

face the competing aim of providing epidemiological context. Firstly, the uncertainty and

heterogeneity of epidemic dynamics create inevitable variability among modelling evidence.

This can itself offer useful context for decision support. On the other hand, this diversity may be

overwhelming or irrelevant. A model combination offers to simplify across this diversity.

However, model combinations with unclear model components risk becoming epidemiologically

uninterpretable, biased, or confounded, while the process of model combination itself is a choice

in representing greater or lesser uncertainty.

This theme was represented throughout this work. For example, we demonstrated the

importance of retaining context in outbreak investigation. Given high methodological uncertainty

in estimating the reproduction number, model combination was thought to create a more robust

consensus. In this work, we showed that this was confounded by heterogeneous epidemic

dynamics among populations represented in different data sources. In this case, model

combination missed the opportunity for policy-relevant epidemiological context. On the other

hand, we found the benefits of consensus in short-term predictions of observable epidemic

dynamics. Model combination created relatively more accurate predictions, with some

consistency across targets. However, this was challenged by the difficulty of evaluating reliability

in the face of changing epidemic dynamics, particularly with unidentifiable ensemble

components. In work evaluating long-term scenario projections, we contrasted these

approaches directly: collecting model trajectories enabled us to retain the greatest degree of

heterogeneity at the point at which these were collected. Meanwhile, progressively comparing

these trajectories to observed data created an increasingly sharp consensus prediction, with

little loss to the accuracy of representing epidemiological context.

The trade-off between offering context or consensus in evidence synthesis is at its clearest in

the choice of model combination method. At one extreme, using qualitative narrative synthesis

can provide the greatest context to communicate uncertainties. For example, SPI-M only

published quantitative estimates within a longer consensus statement that summarised group

discussion of differences among models [12]. Using quantitative combinations can also choose

to aggregate uncertainty within a greater or lesser probabilistic range, such as Vincentised

averaging or the linear opinion pool ensemble [103]. At another extreme, model results might be
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reduced to combining ordinal rankings of categorical outcomes [106,107], for example

summarising to a majority vote using posterior estimates [27]. This choice of method requires a

subjective judgement on the importance of representing heterogeneity.

The subjectivity of this trade-off might also suggest an ethical responsibility in collaborative

evidence synthesis. Against a constant context of underlying uncertainty, collaborations can

select a method for model combination that indicates more or less strength of consensus. This

suggests an ethical, as well as scientific, challenge in navigating between evidence and advice

[141,142], which is intensified during emergency response [143,144]. For example, offering a

single quantitative summary may be afforded greater trust than qualitative interpretation

[145,146]; while combining categorical rather than continuous model outcomes can create the

strongest and simplest perception of quantitative consensus. Meanwhile, without an

understanding of context a model combination may directly breach ethical criteria by

aggregating across subpopulations with known inequalities in the risks of intervention [147].

Collaboration/capacity

Interpreting results from a model combination at least partly depends on understanding its

component models. To create a consistent interpretation, a model combination therefore

requires a consistent sample of component models. This demand is both for temporally stable

model components, and epidemiologically consistent model parameterisations, for example by

harmonisation. At the same time, modellers are typically capacity constrained, facing limited

resources with competing demands for both model development and application. Modelling

collaborations may therefore face a trade-off between the need for consistent contributions while

not depleting the capacity of collaborators.

This trade-off affected each of the collaborations represented here in different ways. For

example, the European Forecast Hub used an open call strategy and had the largest sample of

modelling teams among these collaborations, with over fifty models contributing over time.

However, this was highly inconsistent as modelling teams joined and left. By contrast, the SPI-M

collaboration included ten selectively invited models of the reproduction number, and all

contributed outputs over two years [66]. However, in this work we also saw that maintaining

such consistent contributions created burnout from the intensity and duration of this

collaborative work. In the middle of these extremes, the European Scenario Hub gained internal

consistency among models, with adaptive rounds of model harmonisation. However, the
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resource demands on modellers from this process led to a smaller sample of modellers, and,

alongside lack of clear policy relevance, resulted in modellers leaving the collaboration.

The key concern of balancing consistent collaboration with capacity is that the costs and

benefits from collaboration are asymmetric. For example, collaboration may create a particular

issue for modellers working in traditional academic roles, who must face the opportunity cost of

voluntarily contributing to short term collaborative work instead of traditionally rewarded longer

term research [114,115]. This both affects the sustainability of individual research careers, and

hampers methodological advances in model development [14]. This can devalue the legitimacy

of modelling collaborations, particularly where, as we observed in this work, this asymmetry of

cost/benefit is unequal even within the field of modelling work.

Criteria

Forming and presenting a collaborative model combination requires some criteria for choosing

among these trade-offs. Such criteria might include the complexity of epidemiological dynamics

underlying the target quantity, combined with an understanding of stakeholder needs for reliable

epidemiological interpretation. For example, one approach might favour retaining the maximum

extent of epidemiological context, such as adopting a process for between-model harmonisation

or using a combination that represents the widest possible view of heterogeneity. This might be

preferred when models cannot be easily objectively calibrated, such as in scenario modelling or

estimates of the reproduction number, or when planning requirements are highly sensitive to

anomalies and extreme events, such as in early outbreak detection.

On the other hand, collaborations might approach model combination by exchanging

epidemiological interpretation with a stronger degree of consensus, such as aggregating across

quantiles rather than trajectories, or presenting a single ensemble regardless of fluctuating

model components. This approach might be used if the epidemiological context is relatively well

defined, for example when future projections are limited to one or two generations of

transmission; when there is a shared understanding of data generating processes; or when

operational decisions are not likely to be impacted by underlying heterogeneity in epidemic

dynamics.

Meanwhile, the ability to implement either of these strategies for model combination depends on

the capacity of both modellers and a central coordinating team; adequate infrastructure and

processes to support different approaches to model combination; a clear understanding of
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stakeholder needs from a specific model combination; and the wider ethical context of decision

making during outbreak response.
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Conclusions

Summary

This thesis drew together approaches to collaborative outbreak modelling and model

combination during COVID-19 in the UK and Europe. This built on three modelling

collaborations: the UK’s Scientific Pandemic Infections group on Modelling, and the European

COVID-19 Forecast and Scenario Modelling Hubs. Each paper here reflected a different use of

modelling across the lifecycle of outbreak decision support, while a discussion drew out

common themes and challenges in the use of multi-model combination.

Starting with outbreak investigation, I showed that model combinations of the reproduction

number in the UK could be confounded by misspecification to heterogeneous epidemic

dynamics. This created over confident uncertainty, while missing the opportunity for

policy-relevant insights. Next, I demonstrated that short-term predictions of COVID-19 across

Europe became more accurate with model combination, while challenged by the difficulty of

evaluating accuracy in terms of epidemiological dynamics and mechanisms. Third, I explored

long term European scenario projections. This identified the importance of collecting and

combining models in a way that was both relevant to policy needs and appropriately identified

and represented heterogeneity both within and between models. Finally, I evaluated issues in

the long term sustainability of outbreak response modelling, identifying both the challenges of

response work and the consensus of recommendations for improvements to be found in

retrospective evaluations of outbreak modelling.

This suggests substantial challenges in building and evaluating modelling collaborations and

resulting evidence syntheses. The validity of methods for modelling synthesis may be

challenged by creating inappropriate precision and loss of mechanistic interpretability, arising

from the sample of contributing models and the extent of harmonisation across them. At the

same time, collaborations for outbreak modelling operate at the boundary of science and policy

and must manage stakeholders from both these groups. This is challenged by conflicting needs,

interests, and resource constraints, and raises concerns in selecting and communicating

methods of evidence synthesis. These challenges in both the structure and process of

collaborative modelling interact; they are also intensified under the pressures of both high

uncertainty and time sensitivity during real-time outbreak analysis and control.
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The validity of multi-model combination could be addressed by restricting the target of analysis,

harmonising model assumptions, and selecting a method of combination appropriate to the

decision context. Infrastructural concerns could be addressed by better aligning incentives

towards collaborative work, including expanding modelling capacity. In light of these trade-offs,

appropriate strategies for outbreak modelling collaborations likely depend on the timing, scale,

and purpose of outbreak decision making as well as the existing capacity and resources

available to modelling collaborators.

Limitations

A limitation throughout this work is that it offers little comparison to collaborative modelling

across settings. This work focused on three collaborations tailored to the COVID-19 response.

In particular, these focussed on high-resource settings that attracted a large amount of research

capital and labour. This may not be repeated in future outbreaks or alternate settings where

modelling is used for public health use [117]. In these cases, collaborative trade-offs are likely to

change based on differences in both epidemiological dynamics and political pressures.

Collaborations for less salient infectious disease outbreaks may be unlikely to see the scale and

diversity of data sources, models, and modellers, and it may be more or less difficult to bring

these together in collaboration. To address this limitation, future work could specifically focus on

contrasting both the contribution and challenges of collaborative work in different outbreak

contexts. This would help identify which aspects of collaboration should be prioritised for

capacity building investments.

Relatedly, this work often lacked direct insight into the decision-making context of modelling

collaborations. However, this context is key to justifying the relevance of such projects. For

example, collaborative work specifically targeted to lower and middle income countries has

reported a much higher degree of stakeholder involvement and influence from direct decision

makers in comparison to the work presented here [16,22]. This limitation meant the challenges

identified here focussed on the internal validity of model combinations rather than clarifying the

impact of this on applied use.

Future directions

This discussion has moved in parallel between assessing the infrastructure of collaborative

work, and the information from model combination that such collaborations produce. This

suggests two directions for future work.
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Epidemiological inference and model transparency

This body of work converges on the importance of understanding model selection, both within

and between models participating in modelling collaborations. This suggests potential for future

work to consider sampling, selection effects, and confounding affecting the validity of model

combination. For example, this could include exploring the accuracy and/or precision of

combined estimates with varying degrees of diversity among component models; or identifying

the impact of differential attrition of models over time, for example by model structure or

performance. Further work could also develop and evaluate more epidemiologically principled

model combination methods: such as using stratification on the basis of epidemiological

assumptions [57]; more systematically evaluating methods for prospective model harmonisation

[27]; or continue developing model combinations for decision making targets that are not

continuous projections, such as for crossing thresholds or among scenario choices [107].

A general conclusion from this aspect of the work suggests a focus on developing a systematic

approach to model documentation and reproducibility. This is the crucial link between modelling

contributions and the ability to compare and interpret across them. Real-time collaborative work

can enable discussion of this context. However, model documentation enables transparency

and longer-term reproducibility, as well as further retrospective analyses. Further work could

support adopting the EPIFORGE reporting checklist [19] into collaborative work, support shared

model code, and link collaborative outputs to such model documentation, for example by

visualised summaries of key parameters. Future collaborative work presenting combined model

estimates should increase their transparency and interpretability by clearly reporting the sample

of models, criteria, and method of combination, following guidelines for best practice [27].

Capacity constraints and stakeholder needs

Further work could better characterise and evaluate the demand and supply dynamic of

collaborative work for outbreak decision support. To address the challenge of collaborating

under capacity constraints, future work could more systematically understand modellers’

incentives and disincentives for collaborating. This work specifically suggested the need for both

establishing and evaluating standing modelling capacity outside of an outbreak setting, and

continuously evaluating this in a way that appropriately reflects the diversity of modelling work

during an outbreak. To mirror this, future work could more thoroughly assess stakeholder needs

and expectations from model combinations, for example with prospective stakeholder mapping
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and co-design of collaborative infrastructure. This could better align collaborative contributions

with their use.

This work points towards some of the broader tensions of collaboration at the science-policy

interface during emergencies. Further evaluative work could draw from established frameworks

for such work, for example explicitly accounting for trade-offs between the credibility, relevance,

and legitimacy of such work [114,148]. In this work, we specifically observed issues with

legitimacy, including the inequalities and moral dilemmas of creating consensus in emergency

outbreak response. Such issues could be better recognised. For example, one call for improving

evidence synthesis suggests analyses should be inclusive, rigorous, transparent, and

accessible [149]; while multi-model combinations might consider concepts of ownership,

justification, and robustness [150]. Meanwhile, some efforts have been made to define ethical

frameworks for individual modelling in public health policy, based on principles from biomedical

ethics such as independence and beneficence [147,151]. Future work should translate and

operationalise such principles into the specific setting of modelling synthesis during real-time

emergency response.
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The time-varying reproduction number (Rt: the average number of second-
ary infections caused by each infected person) may be used to assess
changes in transmission potential during an epidemic. While new infections
are not usually observed directly, they can be estimated from data. However,
data may be delayed and potentially biased. We investigated the sensitivity
of Rt estimates to different data sources representing COVID-19 in England,
and we explored how this sensitivity could track epidemic dynamics in
population sub-groups. We sourced public data on test-positive cases, hospi-
tal admissions and deaths with confirmed COVID-19 in seven regions of
England over March through August 2020. We estimated Rt using a model
that mapped unobserved infections to each data source. We then compared
differences in Rt with the demographic and social context of surveillance
data over time. Our estimates of transmission potential varied for each
data source, with the relative inconsistency of estimates varying across
regions and over time. Rt estimates based on hospital admissions and
deaths were more spatio-temporally synchronous than when compared to
estimates from all test positives. We found these differences may be linked
to biased representations of subpopulations in each data source. These
included spatially clustered testing, and where outbreaks in hospitals, care
homes, and young age groups reflected the link between age and severity
of the disease. We highlight that policy makers could better target interven-
tions by considering the source populations of Rt estimates. Further
work should clarify the best way to combine and interpret Rt estimates
from different data sources based on the desired use.

This article is part of the theme issue ‘Modelling that shaped the early
COVID-19 pandemic response in the UK’.

1. Background
Within six months of its emergence in late 2019, the novel coronavirus SARS-
CoV-2 had caused over six million cases of disease (COVID-19) worldwide
[1]. Its rapid initial spread and high death rate prompted global policy interven-
tions to prevent continued transmission, with widespread temporary bans on
social interaction outside the household [2]. Introducing and adjusting such
policy measures depend on a judgement in balancing continued transmission
potential with the multidimensional consequences of interventions. It is,

© 2021 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
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therefore, critical to inform the implementation of policy
measures with a clear and timely understanding of ongoing
epidemic dynamics [3,4].

In principle, transmission could be tracked by directly
recording all new infections. In practice, real-time monitoring
of the COVID-19 epidemic relies on surveillance of indicators
that are subject to different levels of bias and delay. In
England, widely available surveillance data across the popu-
lation include: (i) the number of positive tests, biased by
changing test availability and practice, and delayed by the
time from infection to symptom onset (if testing is symp-
tom-based), from symptom onset to a decision to be tested
and from test to test result; (ii) the number of new hospital
admissions, biased by differential severity that triggers care
seeking and hospitalization, and additionally delayed by
the time to develop severe diseases; and (iii) the number of
new deaths due to COVID-19, biased by the differential risk
of death and the exact definition of a COVID-19 death, and
further delayed by the time to death.

Each of these indicators provides a different view on the
epidemic and therefore contains potentially useful infor-
mation. However, any interpretation of their behaviour
needs to reflect these biases and lags and is best done in com-
bination with the other indicators. One approach that allows
this in a principled manner is to use the different datasets to
separately track the time-varying reproduction number, Rt,
the average number of secondary infections generated by
each new infected person [5]. Because Rt quantifies changes
in infection levels, it is independent of the level of overall
ascertainment as long as this does not change over time or
is explicitly accounted for [6]. At the same time, the under-
lying observations in each data source may result from
different lags from infection to observation. However, if
these delays are correctly specified then transmission be-
haviour over time can be consistently compared via
estimates of Rt.

Different methods exist to estimate the time-varying
reproduction number, and in the UK a number of mathemat-
ical and statistical methods have been used to produce
estimates used to inform policy [7–9]. Empirical estimates
of Rt can be achieved by estimating time-varying patterns
in transmission events from mapping to a directly observed
time-series indicator of infection such as reported sympto-
matic cases. This can be based on the probabilistic
assignment of transmission pairs [10], the exponential
growth rate [11] or the renewal equation [12,13]. Alterna-
tively, Rt can be estimated via mechanistic models that
explicitly compartmentalize the disease transmission cycle
into stages from susceptible through exposed, infectious
and recovered [14,15]. This can include accounting for vary-
ing population structures and context-specific biases in
observation processes, before fitting to a source of observed
cases. Across all methods, key parameters include the time
after an infection to the onset of symptoms in the infecting
and infected, and the source of data used as a reference
point for earlier transmission events [16,17].

In this study, we used a modelling framework based on
the renewal equation, adjusting for delays in observation to
estimate regional and national reproduction numbers of
SARS-Cov-2 across England. The same method was repeated
for each of three sources of data that are available in real time.
After assessing differences in Rt estimates by data source, we
explored why this variation may exist. We compared the

divergence between Rt estimates with spatio-temporal vari-
ation in case detection, and the proportion at risk of severe
disease, represented by the age distribution of test-positive
cases and hospital admissions and the proportion of deaths
in care homes.

2. Methods
(a) Data management
Three sources of data provided the basis for our Rt estimates.
Time-series case data were available by specimen date of test.
This was a de-duplicated dataset of COVID-19 positive tests
notified from all National Health Service (NHS) settings
(Pillar One of the UK Government’s testing strategy) [18] and
by commercial partners in community settings outside of
healthcare (Pillar Two). Hospital admissions were also avail-
able by date of admission if a patient had tested positive
prior to admission, or by the day preceding diagnosis if they
were tested after admission. Death data were available by
date of death and included only those that occurred within
28 days of a positive COVID-19 test in any setting. All data
were publicly available and taken from the UK government
source [19,20], and were aggregated to the seven English
regions used by the NHS.

To provide context for Rt estimates, we sourced weekly data
on regional and national test positivity (percentage positive tests
of all tests conducted) from Public Health England [21], available
as weekly average percentages from 10 May. From the same
source, we also identified the age distributions of cases admitted
to the hospital and all test-positive cases. Hospital admissions by
age were available as age bands with rates per 100 000, so we
used regional population data from 2019 [22] to approximate
the raw count. We separately sourced daily data on the
number of deaths in care homes by region from March 2020,
available from 12 April [23]. Care homes are defined as sup-
ported living facilities (residential homes, nursing homes,
rehabilitation units and assisted living units). Data were available
by date of notification, which included an average 2–3 days’ lag
after the date of death. We also drew on a database that tracked
COVID-19 UK policy updates by date and area [24].

(b) Rt estimation
We estimated Rt using EpiNow2 v. 1.2.0, an open-source package
in R [13,25,26]. This package implements a Bayesian latent vari-
able approach using the probabilistic programming language
Stan [27]. To initialize the model, infections were imputed prior
to the first observed case using a log-linear model with priors
based on the first week of observed cases. This means that the
initial observations both inform the initial parameters and are
then also fit, which makes the initial Rt estimates less reliable
than later estimates. This was a pragmatic choice to allow the
model to be identifiable when only estimating part of the
observed epidemic. We explored other parameterizations, but
these suffered from poor model identification. For each sub-
sequent time step with observed cases, new infections were
imputed using the sum of previous modelled infections
weighted by the generation time probability mass function,
and combined with an estimate of Rt, to give the prevalence at
time t [12]. The generation time was assumed to follow a
gamma distribution that was fixed over time but varied between
samples, with priors drawn from the literature for the mean and
standard deviation [28].

These infection trajectories were mapped to reported case
counts (Dt) by convolving over an incubation period distribution
and report delay distribution (ξ). We assumed a negative bino-
mial observation model for observed reported case counts (Ct),
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with overdispersion ϕ using an exponential prior with mean 1
and mean Dt. We combined this with a multiplicative day of
the week effect (ω(tmod7)) with an independent effect for each
day of the week. We controlled temporal variation using an
approximate Gaussian process [29] with a squared exponential
kernel (GP).

In mathematical notation:

Rt � Rt�1 � GP,

It ¼ Rt

X

t

wtIt�t,

Dt ¼
X

t

jtIt�t,

Ct � NB(Dtv(tmod7), f):

The length scale and magnitude of the kernel were estimated
during model fitting. We used an inverse gamma prior for the
length scale, optimizing shape and scale values to give a distri-
bution with 98% of the density between 2 and 21 days, and the
prior on the magnitude was standard normal. Each region was
fitted independently using Markov-chain Monte Carlo
(MCMC). Eight chains were used with a warmup of 1000
samples and 2000 samples post warmup. Convergence was
assessed using the R hat diagnostic.

We used a gamma-distributed generation time with mean 3.6
days (standard deviation (s.d.) 0.7), and s.d. of 3.1 days (s.d. 0.8),
sourced from [28]. Instead of the incubation period used in the
original study (which was based on fewer data points), we
refitted using a lognormal incubation period with a mean of
5.2 days (s.d. 1.1) and s.d. of 1.52 days (s.d. 1.1) [30]. This incu-
bation period was also used to convolve from unobserved
infections to unobserved symptom onsets (or a corresponding
viral load in asymptomatic cases) in the model. When fitting
the model, the time interval distributions had independent
priors placed on the mean and standard deviation of their
respective lognormal distributions.

We estimated both the delay from symptom onset to positive
test (either in the community or in hospital) and the delay from
symptom onset to death as lognormal distributions using a sub-
sampled Bayesian bootstrapping approach (with 100 subsamples
each using 250 samples) from given data on these delays. Our
delay from the date of onset to date of positive test (either in
the community or in hospital) was taken from a publicly avail-
able linelist of international cases [31]. We removed countries
with outlying delays (Mexico and the Philippines). The resulting
delay data had a mean of 4.4 days and s.d. 5.6. Delays for hospi-
tal admissions and test positives were treated as having the same
delay from infection to onset and observation. For the delay from
onset to death we used data taken from a large observational UK
study [32]. We re-extracted the delay from confidential raw data,
with a mean delay of 14.3 days (s.d. 9.5). There were insufficient
data available on the various reporting delays to estimate
spatially or temporally varying delays, so they were considered
to be static over the course of the epidemic, although we discuss
the effects of this assumption. We have also discussed this
approach more extensively in [25].

(c) Comparison of Rt estimates
We compared Rt estimates by data source, plotting each by
region over time. To avoid the first epidemic wave obscuring
visual differences, all plots were limited to the earliest date that
any Rt estimate for England crossed below 1 after the peak. We
also identified the time at which each Rt estimate fell below 1,
the local minima and maxima of median Rt estimates and the
number of times in the time-series that each Rt estimate crossed
its own median, before comparing these across regions and
against the total count of the raw data.

We investigated correlations between Rt estimates and the
demographic and social context of transmission. We used
linear regression to assess whether the level of raw data count
influenced oscillations in Rt. We assessed the influence of local
outbreaks using test positivity. We used a 5% threshold for posi-
tivity as the level at which testing is either insufficient to keep
pace with widespread community transmission [33], or where
outbreaks have already been detected and tests targeted to
those more likely to be positive. We plotted this against raw
data and Rt, and also used linear regression to test the associ-
ation. We interpreted results in light of known outbreaks and
policy changes. We plotted and qualitatively assessed variation
in Rt estimates against the age distribution of cases over time,
and similarly explored patterns in Rt estimates against the quali-
tative proportion of cases to all deaths. The latter was not
assessed quantitatively due to differences in reference dates
[23]. With the exception of fitting the delay from onset to death
(held confidentially), code and data to reproduce this analysis
are available [34].

3. Results
Across England, the COVID-19 epidemic peaked at 4798
reported test-positive cases (on 22 April 2020), 3099 admis-
sions (1 April 2020) and 975 deaths (8 April 2020) per day
(figure 1a). Following the peak, a declining trend continued
for daily counts of admissions and deaths, while daily case
counts from all reported test-positive cases increased from
July and had more than tripled by August (from 571 on 30
June to 1929 on 1 September). Regions followed similar pat-
terns over time to national trends. However, in the North
East and Yorkshire, Midlands and North West, the incidence
of test-positive cases did not decline to near the count of
admissions as in other regions, and also saw a small tempor-
ary increase during the overall rise in case of counts in early
August.

Following the initial epidemic peak in mid-March 2020,
the date at which Rt estimates crossed below 1 varied by
both data source and geography (figures 1b and 2). The
first region to cross into a declining epidemic was London,
on 26 March according to an Rt estimated from deaths
(where the lower 90% credible interval (CrI) crossed below
1 on 24 March and the upper CrI on 28 March). However,
the data source used to estimate Rt was as important as
any regional variation in estimating the earliest date of epi-
demic decline. Rt estimated from hospital admissions gave
the earliest estimate of a declining epidemic, while using all
test-positive cases to estimate Rt took the longest time to
reach a declining epidemic, in all but one region (East of Eng-
land). This difference by data source varied by up to 21 days
in the North East and Yorkshire, where hospital admissions
gave a median Rt estimate under 1 on 1 April (90%CrIs 31
March, 2 April), but the median Rt estimate from test-positive
cases crossed 1 on only the 22 April (90%CrIs 1 April, 25
April).

When not undergoing a clear state change, Rt estimates
from all data sources oscillate, with oscillations damped
when Rt estimates were transitioning to new levels. In
England and all NHS regions, test-positive cases showed evi-
dence of larger damped oscillations from July when a state
change occurred to Rt over 1. In England, Rt estimates from
test-positive cases increased from 0.99 (90%CrI 0.94–1.04)
on 30 June to 1.37 (90%CrI 1.31–1.1.44) on 27 August. Mean-
while, the timing and duration of oscillations did not align
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between Rt estimates (figure 1b). In some regions, the differ-
ence between Rt estimates was consistent over time, such as
between Rt from admissions and deaths in the South East.
In other regions such as the Midlands, this was not the
case, with the divergence between the Rt estimates from
test-positive cases, admissions, and deaths each varying
over time. Rt estimates from test-positive cases were the

most likely to differ from estimates derived from other data
sources across all regions. Across all regions, Rt estimates
from deaths had slower damped oscillations compared to
estimates from test-positive cases or hospital admissions.
However, oscillations in Rt estimates did not appear to be
linked to the level of raw data counts in each source (electronic
supplementary material, figure S2).
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Figure 1. Epidemic dynamics across (a) England and (b–h) seven English National Health Service regions, 5 April through 27 August 2020. (a1–h1): Daily counts of
confirmed cases by data source, as centred 7 days moving average. Counts marked with vertical dashes (on the green lines—see figure parts (a1,b1,c1,d1,e1))
indicate dates within weeks that averaged greater than 5% test-positivity ( positive/all tests per week). Vertical dotted line indicates the start of national mass
community testing on 3 May. (a2–h2): Estimates of Rt (median, with 50% (darker shade) and 90% (lightest shade) credible interval), derived from each data
source. Data sources include all test-positive cases, hospital admissions and deaths with a positive test in the previous 28 days.
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More rapid oscillations in Rt estimates from test-positive
cases appeared to be linked to targeted testing of case clus-
ters, seen in high test positivity (electronic supplementary
material, table SI2). Both the North East and Yorkshire and
the Midlands saw more frequent oscillations in Rt estimates
from test-positive cases than other regions. The Rt estimates
from cases crossed its own median 10 times over the time-
series in both regions, while in all other NHS regions this
averaged 6 times, and oscillations in Rt estimates from cases
also had a shorter duration in the North East and Yorkshire
and the Midlands compared to other regions (electronic sup-
plementary material, table SI1). Across all regions, 84% of
weeks with over 5% positivity (N = 19) were in the North
East and Yorkshire and the Midlands. In these regions, posi-
tivity peaked on the week of 9 May 2020 at 14% and 12%,
respectively, and overall averaged 6% (95%CI 4.4–7.6%) and
5.9% (95%CI 4.6–7.2%, weeks of 10 May to 22 August),
respectively. High test positivity is likely to have resulted
from targeted testing among known local outbreaks in these
regions. In the Midlands, these included local restrictions
and increased testing across Leicester and in a Luton factory
(restrictions between 4 and 25 July [35]). In Yorkshire case clus-
ters were detected with local restrictions in Bradford,
Calderdale and Kirklees (with restrictions from 5 August [36]).

In England, a divergence between Rt estimated from cases
versus Rt estimated from deaths and admissions coincided
with a decline in the age distribution among all test-positive
cases in England to a younger population (electronic sup-
plementary material, figure SI2A). From mid-April to June
2020, national estimates of Rt from test-positive cases
remained around the same level as those from admissions
or deaths, while after this, cases diverged to a higher
steady state (figure 1a). On 23 May, the median Rt estimated
from cases matched that of deaths at 0.83 (both with 90%CrIs
0.78–0.89), but this was followed by a 78 day period before
the two estimates were again comparable, on 8 August.
Over this period the median Rt estimate from cases was on
average 14% higher (95%CI 12–15%). Meanwhile, the share
of test-positive cases under age 50 increased from under
one-quarter of cases in the week of 28 March (24%, N = 16
185), to accounting for nearly three-quarters of cases by 22
August (77%, N = 6733). While the percentage of test-positive
cases aged 20–49 increased consistently from April to August,
the 0–19 age group experienced a rapid increase over mid-
May through July, increasing by a mean 1% each week over
9 May through 1 August (from 4% of 18 774 cases to 14.8%
of 5017 cases).

Similarly, Rt estimates from admissions in England oscil-
lated over June through July 2020, potentially linked to the

age distribution of hospital admissions. From 0.92 (90%CrI
0.87–0.98) on 11 June, Rt estimated from admissions fell to
0.8 (90%CI 0.75–0.85)) on 27 June. By contrast, this transition
was not observed in the Rt estimate based on test-positive
cases (figure 1a). Older age groups dominated COVID-19
hospital admissions, where 0–44 years never accounted for
more than 12.8% of hospital-based cases (a maximum in
the week of 22 August, N = 690; electronic supplementary
material, figure SI2B). While the proportion of hospital admis-
sions aged 75+ remained steady over May through mid-June,
this proportion appeared to oscillate over July through
August (standard deviation of weekly percentage at 6.1 over
June–August, compared to 5.4 in months March–May). These
variations were not seen in the proportion aged 70+ in the
test-positive case data, which saw a continuous decline from
30% at the start of June to 7% by August.

Rt estimated from either admissions or deaths experi-
enced near-synchronous local peaks across regions over
April and May 2020. We compared this Rt estimated from
deaths with its source data and a separate regional dataset
of deaths in care homes. In the South East and South West,
the Rt estimates from deaths rose over April, with a peak in
early May. In the South West, the median Rt estimate from
deaths increased by 0.04 from 22 April to 7 May (from 0.8
(90%CrI 0.72–0.88) to 0.84 (90%CrI 0.76–0.95)); and by 0.06
from 17 April to 4 May in the South East (from 0.82 (90%
CrI 0.77–0.9) to 0.88 (90%CrI 0.72–0.88)). In both these
regions, this early May peak in Rt estimates from deaths
coincided with similarly rising Rt estimates from hospital
admissions, while the reverse trend was seen in Rt estimates
from cases. In all regions, care home deaths peaked over
22–29 April (by date of notification; electronic supplementary
material, figure SI3). This was later than regional peaks in the
raw count of all deaths in any setting (which peaked between
8 and 16 April, by date of death), even accounting for a 2–3
day reporting lag. This meant that the proportion of deaths
from care homes varied over time, where in the South East
and South West, deaths in care homes appeared to account
for nearly all deaths for at least the period mid-May to July.

4. Discussion
We estimated the time-varying reproduction number for
COVID-19 over March through August 2020 across England
and English NHS regions, using test-positive cases, hospital
admissions and deaths with confirmed COVID-19. Our esti-
mates of transmission potential varied for each of these
sources of infections, and the divergence between estimates
from each data source was not consistent within or across

South West
South East

London
East of England

Midlands
North West

North East and Yorkshire
England

Mar 23

data source test-positive hospital admissions deaths

Mar 30 Apr 06 Apr 13 Apr 20 Apr 27

Figure 2. Dates in 2020 on which Rt estimate crossed 1 after first epidemic peak, median and 90% credible interval, by the data source for England and seven NHS regions.
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regions over time, although estimates based on hospital
admissions and deaths were more spatio-temporally synchro-
nous than compared to estimates from cases. We compared
differences in Rt estimates to the extent and context of trans-
mission and found that the difference between Rt estimated
from cases, admissions and deaths may be linked to uneven
rates of testing, the changing age distribution of cases and
outbreaks in care home populations.

Rt estimates varied by data source, and the extent of vari-
ation itself differed by region and over time. Following the
initial epidemic peak in mid-March, the date at which Rt esti-
mates crossed below 1 varied by both data source and
geography, following which Rt estimates from all data
sources varied when not undergoing a clear state change.
The differences in these oscillations by data source may indicate
different underlying causes. This implies that each data source
was influenced differently by changes in subpopulations
over time.

Increasingly rapid oscillations in Rt estimates from test-
positive cases were associated with higher test-positivity
rates. Increasing test-positivity rates could be an indication
of inconsistent community testing, with the observation of
an initial rise in transmission amplified by expanded testing
and local interventions where a cluster of new, mild cases
had been identified [18]. This targeted testing may have
driven regionally localized instability in case detection and
resulting Rt estimates but may not reflect changes in under-
lying transmission. This is a limitation of monitoring
epidemic dynamics using test-positive surveillance data in
areas where testing rates vary across the population and over
time. This also suggests that Rt estimates from admissions
may be more reliable than that from all test-positive cases for
indicating the relative intensity of an epidemic over time [37].

We hypothesized that variations in Rt estimates were also
related to changes in the age distribution of cases over time,
because age is associated with severity [38,39]. If each data
source represented a different sample of this age-severity gra-
dient, and transmission also varied by age or severity, Rt

estimates from each source would diverge. Early in the epi-
demic, tests were largely limited to hospital settings, and
disproportionately represented healthcare workers compared
to the general population. This sampling bias would be
reflected in the Rt from test-positive cases. The early peak
in Rt could then represent a substantial separate route of
transmission in healthcare settings, in a wave of nosocomial
infections [40]. If healthcare workers were less susceptible
to severe disease than those older than working age, an
early peak in Rt estimated from test-positive cases would
not have been represented in Rt estimated from hospital
admissions or deaths. Meanwhile, either hospital admissions
or deaths data would be more representative of sampling a
separate route of transmission among the general population.
If infections spread through the general population later than
nosocomial infections, then the timing of peaks in Rt

estimates from each data source would not have matched.
From late spring, outbreaks in care homes may have con-

tributed to a divergence between Rt estimates from test-
positive cases and other data sources. All regions saw a
near-synchronous local peak in Rt estimated from hospital
admissions over spring, which was not seen in Rt estimated
from test-positive cases. This may have reflected the known
widespread regional outbreaks in care homes. The care
home population is on average older and more clinically

vulnerable than the general population, while also being
less likely to appear for community testing [41,42]. Increased
transmission in care homes would then be seen in an
increased Rt from hospital admissions, but not observed in
an Rt from test-positive cases.

Similarly, the age-severity gradient may have impacted
transmission estimates later in the epidemic when commu-
nity testing became more widely available. We found that
from June 2020 onwards, Rt estimates from all test-positive
cases appeared to increasingly diverge away from Rt esti-
mates from admissions and deaths, transitioning into a
separate, higher, steady state. This was followed by the
observed age distribution of all test-positive cases becoming
increasingly younger, while the age distribution of admis-
sions remained approximately level. Because of the severity
gradient, this suggested that the Rt estimates from all test-
positive cases and admissions were more biased by the rela-
tive proportion of younger cases and older cases, respectively,
than the Rt estimates from admissions or deaths.

Our analysis was limited where data or modelling
assumptions did not reflect underlying differences in trans-
mission. Rt estimates can become increasingly uncertain
and unstable with lower case counts. Further, estimated
unobserved infections were mapped to reported cases or
deaths using two delay distributions: the time from infection
to test in the community or hospital, and a longer delay from
infection to death. Mis-specification of the priors would have
created bias in the temporal distribution of all resulting Rt

estimates, with estimated dates of infection and Rt incorrectly
shifted too much or too little in time compared to the true
infection curve, and decreased accuracy of Rt estimates [43].

We used the same distribution priors for both delays after
symptom onset to positive test, and to hospital admission.
This may be inaccurate where cases with mild symptoms
take longer to present for testing than severe cases presenting
for hospital admission, or vice versa. The difference between
the two delays over time may also have varied, with a poss-
ible decrease in delay to reported tests when mass
community testing became available over the summer of
2020. This would have had a differential impact on the accu-
racy of Rt estimates over time in either direction, which could
explain some of the oscillations in Rt estimates from test-posi-
tive case data compared to hospital admissions. We had no
data over time on delays from symptom onset to reporting
in each data source with which to test this hypothesis. How-
ever, we have mitigated some of the impact of this by using a
sub-sampled bootstrap of the available delay data when esti-
mating the delay distribution priors. This inflated the
uncertainty of these priors in line with the hypothesis that
they varied over time. This adjustment may be conservative
if the delay distributions are stable over time.

Spatial dependence in delay distributions may also have
contributed to their mis-specification and increased uncer-
tainty in Rt estimates. We observed that the variation in Rt

estimates from admissions and deaths often showed compar-
able levels and patterns in oscillations over time but were out
of phase with each other. This may have been due to using
data sources from different populations for each delay
estimate. To estimate the delay between symptom onset to
either a positive test or hospitalization, we used a linelist of
all patients publicly reported globally, which had a mean
delay of 5.4 days (s.d. 5.6). This varied only slightly from
an early estimate in the UK epidemic, where the delay from
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onset to hospitalization had a mean of 5.14 days (s.d. 4.2) in
confidential Public Health England (FF100) data [44]. Mean-
while, the same global public linelist contained few records
with delay from onset to death, with mean 11.4 (s.d. 16.5). We
compared this to confidential UK data from an observational
study that had mean delay 14.3 days (s.d. 9.5) [32].

Comparing each type and source of delay, we judged the
benefits of using open data to outweigh the minor observed
spatial variation of the delay from onset to test or admission,
although at the expense of increased uncertainty. However,
we judged that the difference in delay from onset to death
in the UK compared to public (international) data was suffi-
ciently meaningful to justify using confidential UK data in
order to maintain the accuracy of the Rt estimate from
deaths. The difference in the geographical source of delay dis-
tributions should not have substantially altered our
conclusions about discrepancies between central estimates of
Rt from either test-positives or admissions, compared to Rt

estimated from deaths. However, using the international
public linelist for the delay to test or admission may have
introduced additional uncertainty around the respective Rt

estimates, compared to greater accuracy (reduced uncertainty)
in estimates of Rt from deaths based on a UK-specific delay
distribution.

The data sources themselves may also have been inaccur-
ate or biased, which would change the representation of the
population we have assumed here. For example, we excluded
data from other nations of the UK (Wales, Scotland and
Northern Ireland) in our analysis, as these differed in both
availability over time and in data collection and reporting
practices [19,45]. English regional data may also contain
bias where new parts of the population might be under
focus for testing efforts, or the population characteristics of
hospital admissions from COVID-19 may have changed
over time with changes in clinical criteria or hospital capacity
for admission. This would mean that an Rt estimate from
these data sources would represent different source popu-
lations over time, limiting our ability to reliably compare
against Rt estimates from other data sources. Where possible
we highlighted this by comparing Rt estimates to known
biases and changes in case detection and reporting.

Our approach is unable to make strong causal conclusions
about varying transmission, and assumptions about sampling
and the representation of subpopulations remain implicit.
Alternatively, varying epidemics in subpopulations could
have been addressed with mechanistic models that explicitly
consider transmission in different settings and are fitted to
multiple data sources. However, these require additional
assumptions, detailed data to parameterize and may be
time-consuming to develop. In the absence of data, the
number of assumptions required for these models can intro-
duce inherent structural biases. Our approach contains few
structural assumptions and therefore may be more robust
when data are sparse, or information is required in real-time.

We conclude that when estimating Rt, the choice of data
source should be guided by the policy context in which the
estimates will be used and interpreted. This work highlights
that there is no clear superior choice of data source, while Rt

estimates are sensitive to assumptions about the underlying
population of each data source. This means that both produ-
cers and users of Rt estimates should understand relevant
biases in the data source’s population sampling strategy,
such as by community case detection or patient severity,

before drawing conclusions about transmission in the
population as a whole.

We also recommend presenting concurrent Rt estimates
jointly, rather than pooling estimates of Rt from different
data sources. Pooling estimates would both suffer from
unclear weighting and lose useful information about vari-
ation in subpopulation transmission. Although the
reconstruction of the underlying transmission process from
the reporting processes is robust, it is unclear how weights
would be assigned based on likelihood to estimates from
different data sources. Further, the variation in concurrent
Rt estimates provides more information about population
transmission than any single estimate, when considered in
light of the sampling biases of each data source. This
additional information can be useful to identify transmission
intensity by subpopulation where access to high quality dis-
aggregated data may not be available in real time. While this
can be difficult to interpret without specific knowledge of
population structure and dynamics, this information would
be lost altogether in a single or pooled estimate of Rt. By con-
trast, if the policy were to be based on either a single or an
averaged Rt estimate, it would be unclear what any
recommendation should be and for whom.

Future work could explore systematic differences in the
influence of data sources on Rt estimates by extending the
comparison of Rt by data source to other countries or infec-
tious diseases. Additionally, work should also clarify the
potential for comparing Rt estimates in real-time tracking of
outbreaks and explore the inconsistencies in case detection
over time and space, where a cluster of cases leads to a
highly localized expansion of community testing, creating
an uneven spatial bias in transmission estimates. These find-
ings may be used to improve Rt estimation and identify
findings of use for epidemic control. Based on the work pre-
sented here we now provide Rt estimates, updated each day,
for test positive cases, admissions, and deaths in each NHS
region and in England. Our estimates are visualized on our
website, are available for download, and are produced
using publicly accessible code [46,47].

Tracking differences by data source can improve under-
standing of variation in testing bias in data collection,
highlight outbreaks in new subpopulations, indicate differen-
tial rates of transmission among vulnerable populations and
clarify the strengths and limitations of each data source.
Our approach can quickly identify such patterns in develop-
ing epidemics that might require further investigation and
early policy intervention. Our method is simple to deploy
and scale over time and space using existing open-source
tools, and all code and estimates used in this work are
available to be used or re-purposed by others.

5. In context
In the UK, public policy and the media have prominently
used the effective reproduction number (Rt) of COVID-19 to
summarise ongoing pandemic transmission. Several teams
in the UK have been contributing estimates of Rt that are
aggregated into a consensus range, but the methods,
approaches, and data sources for estimating transmission
have varied among teams and over time. For example, data
sources could, amongst others, include counts of test-positive
cases, hospital admissions, or deaths due to COVID-19. In
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our team’s submissions to the Scientific Pandemic Influenza
Group on Modelling (SPI-M) from March onwards, we saw
that even when using a consistent method, Rt estimates
were not a single, clear-cut number, but varied depending
on the source of data.

In late May, we started to explore whether these differ-
ences in transmission estimates from each data source could
be a policy-relevant indicator of biased data sampling and
subpopulation epidemics. We first presented a summary of
the differences in our team’s Rt estimates by data source to
SPI-M as a short note in early June. From June onwards we
used all three data sources to estimate Rt and contributed
them separately to the weekly reproduction number esti-
mates published by SPI-M and considered by the Scientific
Advisory Group for Emergencies (SAGE). Over this time,
we have adapted our work to support the changing UK
policy context. This has meant there are several differences
in available data, methods, and implications of this work
between the time we first generated the SPI-M report and
the time of this publication.

As COVID-19 data became more openly accessible, we
started to publish a daily comparison of UK Rt estimates
by data source (epiforecasts.io/covid/posts/national/
united-kingdom). This had initially been impossible as
there were very few sources of public subnational data.
Thanks to the Public Health England dashboard (corona-
virus.data.gov.uk), public data sources for England
increased in both quantity and quality and from October
we were able to produce subnational Rt estimates using a
variety of public data sources. We felt that presenting
these estimates publicly would be useful given the high
level of interest in the government’s claimed use of Rt as a
policy decision tool.

Between generating the original SPI-M submission and
this publication, we significantly developed and improved
the software we have built to estimate Rt (“EpiNow2”). We
continue to refine our methods for estimating Rt, although
the improved methods did not substantially change the
trend or direction of differences between estimates and our
resulting conclusions.

Our interpretation of the differences in Rt estimates has
changed over time as we saw new evidence for concentrated
transmission in subpopulations. In the earliest paper pre-
sented to SPI-M, discussion centred on the likely effects
of hospital-acquired infection and testing availability on
differences between Rt from test-positives compared to
admissions or deaths over March and May. However, increas-
ing evidence for a widespread and severe epidemic in care
homes provided an alternative explanation for such differ-
ences. We realised that, even without disaggregated data by
age or residence, simply identifying the differences in Rt esti-
mates could have been an early indicator of the epidemic in
this vulnerable subpopulation. We therefore continued to
track these differences, which once again became wider
over the summer as transmission moved between age
groups after restrictions were lifted and mass testing
became available.

Most importantly, we continue to find new insights into
the state of the UK pandemic from comparing Rt estimates.
One of the clearest trends we have seen in varying Rt esti-
mates by data source has followed from the National
Health Service vaccination campaign. Rt estimates from
deaths are now consistently below those from

hospitalisations and cases. This is a strong indicator of the
positive impact of vaccination, and an encouraging further
use for this work.

Data accessibility. The code that supports the findings of this study is avail-
able on Github (https://github.com/epiforecasts/rt-comparison-uk-
public, https://doi.org/10.5281/zenodo.4029075). Other sources of
data were derived from the following resources available in the
public domain: Office for National Statistics [23]. https://www.gov.
uk/government/publications/national-covid-19-surveillance-reports
[21]. See https://www.ons.gov.uk/peoplepopulationandcommunity/
populationandmigration/populationestimates/datasets/populationes-
timatesforukenglandandwalesscotlandandnorthernireland [22]. Xu et al.
[31]. See The Health Foundation: https://www.health.org.uk/news-
andcomment/charts-and-infographics/covid-19-policy-tracker [24].
See UK Government Dashboard: https://coronavirus.data.gov.uk/
about-data [19]. Data not yet available in the public domain included
the delay from onset to death for a sample of COVID-19 positive
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Figure SI1. Duration of each Rt oscillation against the mean of data over the oscillation. Shown with 

fitted linear models by data source. Scatter points represent each oscillation across 7 English NHS 

regions. For Rt derived from deaths, longer durations of oscillations appeared to be related to lower 

raw counts (coefficient: -0.88, R2 0.64), but this had a very small sample size (N oscillations = 9) and 

this relationship was not meaningful for cases or hospital admissions. 
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Figure SI2. Weekly percentage of cases in England by age, among all test-positive cases (A) and newly 

diagnosed hospital admissions (B). 

 

Figure SI3. Deaths in all settings by date of death, and deaths in care homes by date of notification to 

Clinical Quality Commission, shown by English NHS region, April to August 2020. Date of notification 

is typically 2-3 days after the date of death [22].  Counts are shown as a seven-day moving average. 

Care homes data reported from April 2020. 
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Table SI1. Key summary statistics for Rt from when Rt crossed 1, indicating the end of the first wave of the epidemic, to the most recent estimate. 90%CrI = 

credible interval (quantiles around median); 95%CI = confidence interval (standard error around mean) 

*End of first wave = earliest date Rt <1. Last estimate of Rt from cases and admissions: 28th August, from deaths: 19th August 2020 

**Troughs defined as local minima within a sequential fall and rise in the median Rt estimate 

 

Region 
Data source for Rt 

estimation 

Earliest 

date 

median 

Rt <1 

Median Rt after 

first wave* (90% 

CrI) 

Minimum median Rt after 

first wave* (date, median 

[90%CrI]) 

Maximum median Rt 

after first wave* (date, 

median [90%CrI]) 

Number of 

days where 

median Rt 

crossed 

series median 

Mean number 

of days 

between 

troughs** 

(mean, 95% CI) 

England Test-positive cases 01 Apr 0.97 (0.85-1.11) 23 May (0.83 [0.78-0.89]) 27 Aug (1.37 [1.31-1.44]) 6 32 (21-44, n=4) 

Hospital admissions 30 Mar 0.9 (0.81-0.98) 08 Apr (0.75 [0.7-0.79]) 27 Aug (1.24 [1.17-1.31]) 8 27 (24-29, n=3) 

Deaths 31 Mar 0.86 (0.8-0.98) 27 Jun (0.82 [0.76-0.89]) 19 Aug (1.06 [0.97-1.14]) 4 40 (n=1) 

North 

East and 

Yorkshire 

Test-positive cases 22 Apr 0.96 (0.82-1.13) 22 Jun (0.79 [0.73-0.85]) 27 Aug (1.49 [1.4-1.58]) 10 26 (23-29, n=5) 

Hospital admissions 01 Apr 0.89 (0.82-1.01) 09 Apr (0.81 [0.76-0.87]) 27 Aug (1.27 [1.16-1.38]) 8 31 (23-39, n=4) 

Deaths 07 Apr 0.86 (0.77-1.02) 04 Jun (0.78 [0.72-0.85]) 19 Aug (1.11 [1-1.21]) 2 NA 

North 

West 

Test-positive cases 05 Apr 0.94 (0.85-1.19) 26 May (0.82 [0.76-0.87]) 27 Aug (1.45 [1.37-1.54]) 4 34 (22-46, n=3) 

Hospital admissions 01 Apr 0.91 (0.74-1.09) 25 Jun (0.67 [0.6-0.75]) 27 Aug (1.33 [1.22-1.44]) 8 38 (30-47, n=3) 

Deaths 03 Apr 0.88 (0.8-1.02) 15 Jun (0.81 [0.73-0.88]) 19 Aug (1.08 [0.97-1.17]) 4 NA 

Midlands Test-positive cases 29 Mar 0.96 (0.84-1.17) 23 May (0.82 [0.75-0.88]) 27 Aug (1.51 [1.41-1.61]) 12 27 (25-28, n=5) 

Hospital admissions 29 Mar 0.91 (0.76-1.03) 07 Apr (0.7 [0.64-0.75]) 27 Aug (1.2 [1.11-1.31]) 6 26 (22-30, n=4) 

Deaths 31 Mar 0.86 (0.78-0.99) 24 Jun (0.78 [0.71-0.85]) 19 Aug (1.11 [1.01-1.23]) 8 33 (12-54, n=2) 

East of 

England 

Test-positive cases 02 Apr 0.96 (0.82-1.15) 09 May (0.8 [0.74-0.86]) 22 Aug (1.23 [1.15-1.31]) 6 36 (34-38, n=3) 

Hospital admissions 02 Apr 0.89 (0.81-0.99) 28 Jul (0.8 [0.71-0.9]) 27 Aug (1.11 [0.99-1.24]) 8 36 (28-45, n=3) 

Deaths 02 Apr 0.85 (0.78-0.94) 06 Jul (0.8 [0.71-0.88]) 02 Apr (0.99 [0.93-1.05]) 6 38 (24-51, n=2) 

London Test-positive cases 29 Mar 0.98 (0.77-1.15) 07 May (0.74 [0.68-0.8]) 25 Aug (1.2 [1.13-1.27]) 4 35 (27-43, n=2) 

Hospital admissions 29 Mar 0.89 (0.73-1.04) 08 Apr (0.67 [0.6-0.73]) 27 Aug (1.23 [1.12-1.36]) 4 47 (16-78, n=2) 

Deaths 26 Mar 0.84 (0.7-1.02) 13 Apr (0.68 [0.61-0.75]) 19 Aug (1.07 [0.91-1.24]) 4 41 (36-46, n=2) 

South 

East 

Test-positive cases 05 Apr 0.96 (0.82-1.15) 28 May (0.82 [0.75-0.87]) 22 Aug (1.2 [1.14-1.27]) 4 35 (19-51, n=3) 

Hospital admissions 01 Apr 0.89 (0.81-1.02) 31 May (0.8 [0.73-0.87]) 27 Aug (1.11 [1-1.21]) 8 29 (23-34, n=3) 

Deaths 02 Apr 0.86 (0.79-0.95) 25 May (0.82 [0.76-0.9]) 19 Aug (0.99 [0.87-1.12]) 6 48 (32-64, n=2) 

South 

West 

Test-positive cases 06 Apr 1.02 (0.73-1.18) 02 Jun (0.66 [0.58-0.74]) 16 Jul (1.21 [1.12-1.3]) 6 39 (21-58, n=3) 

Hospital admissions 01 Apr 0.9 (0.76-1.02) 03 Jun (0.7 [0.61-0.78]) 27 Aug (1.02 [0.91-1.18]) 6 44 (28-59, n=2) 

Deaths 04 Apr 0.85 (0.72-1.06) 03 Jun (0.72 [0.62-0.81]) 07 Aug (1.05 [0.9-1.24]) 2 43 (n=1) 
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Effect on regional average 

duration between troughs in Rt 
Influence of % test positive 

Source of Rt Intercept (95% CI) Coefficient (95% CI) Adjusted R2 

Test positive cases 39 (36.7 to 42) -2.2 (-2.8 to -1.4) 0.87 (p <0.001) 

Hospital admissions 41 (29.5 to 52) -2.1 (-5.5 to 1.2) 0.18 (p 0.2) 

Deaths 45.4 (38 to 52.5) -3.7 (-4.7 to 0.37) 0.48 (p 0.07) 

 

Table SI2. Results of individual linear regressions of test positive on each Rt estimate from test-positive 

cases, hospital admissions, and deaths separately. Test positivity is the average % positive of all tests 

conducted. Data for seven English NHS regions and England (N=8). 
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Abstract
Background: Short- term forecasts of infectious disease burden can contribute to situational 
awareness and aid capacity planning. Based on best practice in other fields and recent insights in 
infectious disease epidemiology, one can maximise the predictive performance of such forecasts if 
multiple models are combined into an ensemble. Here, we report on the performance of ensembles 
in predicting COVID- 19 cases and deaths across Europe between 08 March 2021 and 07 March 
2022.
Methods: We used open- source tools to develop a public European COVID- 19 Forecast Hub. We 
invited groups globally to contribute weekly forecasts for COVID- 19 cases and deaths reported by 
a standardised source for 32 countries over the next 1–4 weeks. Teams submitted forecasts from 
March 2021 using standardised quantiles of the predictive distribution. Each week we created an 
ensemble forecast, where each predictive quantile was calculated as the equally- weighted average 
(initially the mean and then from 26th July the median) of all individual models’ predictive quantiles. 
We measured the performance of each model using the relative Weighted Interval Score (WIS), 
comparing models’ forecast accuracy relative to all other models. We retrospectively explored alter-
native methods for ensemble forecasts, including weighted averages based on models’ past predic-
tive performance.
Results: Over 52 weeks, we collected forecasts from 48 unique models. We evaluated 29 models’ 
forecast scores in comparison to the ensemble model. We found a weekly ensemble had a consis-
tently strong performance across countries over time. Across all horizons and locations, the 
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ensemble performed better on relative WIS than 83% of participating models’ forecasts of incident 
cases (with a total N=886 predictions from 23 unique models), and 91% of participating models’ 
forecasts of deaths (N=763 predictions from 20 models). Across a 1–4 week time horizon, ensemble 
performance declined with longer forecast periods when forecasting cases, but remained stable 
over 4 weeks for incident death forecasts. In every forecast across 32 countries, the ensemble 
outperformed most contributing models when forecasting either cases or deaths, frequently outper-
forming all of its individual component models. Among several choices of ensemble methods we 
found that the most influential and best choice was to use a median average of models instead of 
using the mean, regardless of methods of weighting component forecast models.
Conclusions: Our results support the use of combining forecasts from individual models into an 
ensemble in order to improve predictive performance across epidemiological targets and popu-
lations during infectious disease epidemics. Our findings further suggest that median ensemble 
methods yield better predictive performance more than ones based on means. Our findings also 
highlight that forecast consumers should place more weight on incident death forecasts than inci-
dent case forecasts at forecast horizons greater than 2 weeks.
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Editor's evaluation
This large- scale collaborative study is a timely contribution that will be of interest to researchers 
working in the fields of infectious disease forecasting and epidemic control. This paper provides 
a comprehensive evaluation of the predictive skills of real- time COVID- 19 forecasting models in 
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Europe. The conclusions of the paper are well supported by the data and are consistent with find-
ings from studies in other countries.

Introduction
Epidemiological forecasts make quantitative statements about a disease outcome in the near future. 
Forecasting targets can include measures of prevalent or incident disease and its severity, for some 
population over a specified time horizon. Researchers, policy makers, and the general public have 
used such forecasts to understand and respond to the global outbreaks of COVID- 19 (Van Basshuysen 
et al., 2021; CDC, 2020; European Centre for Disease Prevention and Control, 2021c). At the same 
time, forecasters use a variety of methods and models for creating and publishing forecasts, varying in 
both defining the forecast outcome and in reporting the probability distribution of outcomes (Zelner 
et al., 2021; James et al., 2021).

Within Europe, comparing forecasts across both models and countries can support a range of 
national policy needs simultaneously. European public health professionals operate across national, 
regional, and continental scales, with strong existing policy networks in addition to rich patterns of 
cross- border migration influencing epidemic dynamics. A majority of European countries also coop-
erate in setting policy with inter- governmental European bodies such as the European Centre for 
Disease Prevention and Control (ECDC). In this case, a consistent approach to forecasting across 
the continent as a whole can support accurately informing cross- European monitoring, analysis, and 
guidance (European Centre for Disease Prevention and Control, 2021c). At a regional level, multi- 
country forecasts can support a better understanding of the impact of regional migration networks. 
Meanwhile, where there is limited capacity for infectious disease forecasting at a national level, fore-
casters generating multi- country results can provide an otherwise- unavailable opportunity for fore-
casts to inform national situational awareness. Some independent forecasting models have sought to 
address this by producing multi- country results (Aguas et al., 2020; Adib et al., 2021; Agosto and 
Giudici, 2020; Agosto et al., 2021).

Variation in forecast methods and presentation makes it difficult to compare predictive perfor-
mance between forecast models, and from there to derive objective arguments for using one forecast 
over another. This confounds the selection of a single representative forecast and reduces the reli-
ability of the evidence base for decisions based on forecasts. A ‘forecast hub’ is a centralised effort 
to improve the transparency and usefulness of forecasts, by standardising and collating the work of 
many independent teams producing forecasts (Reich et al., 2019a). A hub sets a commonly agreed- 
upon structure for forecast targets, such as type of disease event, spatio- temporal units, or the set 
of quantiles of the probability distribution to include from probabilistic forecasts. For instance, a hub 
may collect predictions of the total number of cases reported in a given country for each day in the 
next 2 weeks. Forecasters can adopt this format and contribute forecasts for centralised storage in 
the public domain.

This shared infrastructure allows forecasts produced from diverse teams and methods to be visual-
ised and quantitatively compared on a like- for- like basis, which can strengthen public and policy use 
of disease forecasts. The underlying approach to creating a forecast hub was pioneered in climate 
modelling and adapted for collaborative epidemiological forecasts of dengue (Johansson et  al., 
2019) and influenza in the USA (Reich et al., 2019a; Reich et al., 2019b). This infrastructure was 
adapted for forecasts of short- term COVID- 19 cases and deaths in the US (Cramer et al., 2021a; 
Ray et al., 2020), prompting similar efforts in some European countries (Bracher et al., 2021c; Funk 
et al., 2020; Bicher et al., 2020).

Standardising forecasts allows for combining multiple forecasts into a single ensemble with the 
potential for an improved predictive performance. Evidence from previous efforts in multi- model 
infectious disease forecasting suggests that forecasts from an ensemble of models can be consis-
tently high performing compared to any one of the component models (Johansson et  al., 2019; 
Reich et al., 2019b; Viboud et al., 2018). Elsewhere, weather forecasting has a long- standing use of 
building ensembles of models using diverse methods with standardised data and formatting in order 
to improve performance (Buizza, 2019; Moran et al., 2016).

The European COVID- 19 Forecast Hub (European Covid- 19 Forecast Hub, 2023d) is a project 
to collate short- term forecasts of COVID- 19 across 32 countries in the European region. The Hub is 
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funded and supported by the ECDC, with the primary aim to provide reliable information about the 
near- term epidemiology of the COVID- 19 pandemic to the research and policy communities and the 
general public (European Centre for Disease Prevention and Control, 2021c). Second, the Hub 
aims to create infrastructure for storing and analysing epidemiological forecasts made in real time by 
diverse research teams and methods across Europe. Third, the Hub aims to maintain a community of 
infectious disease modellers underpinned by open science principles.

We started formally collating and combining contributions to the European Forecast Hub in March 
2021. Here, we investigate the predictive performance of an ensemble of all forecasts contributed to 
the Hub in real time each week, as well as the performance of variations of ensemble methods created 
retrospectively.

Materials and methods
We developed infrastructure to host and analyse prospective forecasts of COVID- 19 cases and deaths. 
The infrastructure is compatible with equivalent research software from the US (Cramer et al., 2021c; 
Wang et al., 2021) and German and Polish COVID- 19 (Bracher et al., 2020) Forecast Hubs, and easy 
to replicate for new forecasting collaborations.

Forecast targets and models
We sought forecasts for the incidence of COVID- 19 as the total reported number of cases and deaths 
per week. We considered forecasts for 32 countries in Europe, including all countries of the Euro-
pean Union, European Free Trade Area, and the United Kingdom. We compared forecasts against 
observed data reported for each country by Johns Hopkins University (JHU, Dong et al., 2020). JHU 
data sources included a mix of national and aggregated subnational data. We aggregated incidence 
over the Morbidity and Mortality Weekly Report (MMWR) epidemiological week definition of Sunday 
through Saturday.

Teams could express their uncertainty around any single forecast target by submitting predictions 
for up to 23 quantiles (from 0.01 to 0.99) of the predictive probability distribution. Teams could also 
submit a single point forecast. At the first submission, we asked teams to add a pre- specified set of 
metadata briefly describing the forecasting team and methods (provided online and in supplementary 
information). No restrictions were placed on who could submit forecasts. To increase participation, 
we actively contacted known forecasting teams across Europe and the US and advertised among 
the ECDC network. Teams submitted a broad spectrum of model types, ranging from mechanistic to 
empirical models, agent- based and statistical models, and ensembles of multiple quantitative or qual-
itative models (described at European Covid- 19 Forecast Hub, 2023a). We maintain a full project 
specification with a detailed submissions protocol (European Covid- 19 Forecast Hub, 2023c).

We collected forecasts submitted weekly in real time over the 52- week period from 08 March 2021 
to 07 March 2022. Teams submitted at latest 2 days after the complete dataset for the latest fore-
casting week became available each Sunday. We implemented an automated validation programme 
to check that each new forecast conformed to standardised formatting. Forecast validation ensured a 
monotonic increase of predictions with each increasing quantile, integer- valued non- negative counts 
of predicted cases, as well as consistent date and location definitions.

Each week we used all available valid forecasts to create a weekly real- time ensemble model 
(referred to as ‘the ensemble’ from here on), for each of the 256 possible forecast targets: incident 
cases and deaths in 32 locations over the following one through 4 weeks. The ensemble method was 
an unweighted average of all models’ forecast values, at each predictive quantile for a given location, 
target, and horizon. From 08 March 2021, we used the arithmetic mean. However we noticed that 
including highly anomalous forecasts in a mean ensemble produced extremely wide uncertainty. To 
mitigate this, from 26th July 2021 onwards the ensemble instead used a median of all predictive 
quantiles.

We created an open and publicly accessible interface to the forecasts and ensemble, including an 
online visualisation tool allowing viewers to see past data and interact with one or multiple forecasts 
for each country and target for up to 4 weeks’ horizon (European Covid- 19 Forecast Hub, 2023b). 
All forecasts, metadata, and evaluations are freely available and held on Github (European Covid- 19 
Forecast Hub, 2023d) (archived in real- time at Sherratt, 2022), and Zoltar, a platform for hosting 
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epidemiological forecasts (EpiForecasts, 2021; Reich et al., 2021). In the codebase for this study 
(covid19- forecast- hub- europe, 2022) we provide a simple method and instructions for downloading 
and preparing these data for analysis using R. We encourage other researchers to freely use and adapt 
this to support their own analyses.

Forecast evaluation
In this study, we focused only on the comparative performance of forecasting models relative to each 
other. Performance in absolute terms is available on the Hub website (European Covid- 19 Forecast 
Hub, 2023b). For each model, we assessed calibration and overall predictive performance. We eval-
uated all previous forecasts against actual observed values for each model, stratified by the forecast 
horizon, location, and target. We calculated scores using the scoringutils R package (Bosse et al., 
2023). We removed any forecast surrounding (both the week of, and the first week after) a strongly 
anomalous data point. We defined anomalous as where any subsequent data release revised that data 
point by over 5%.

To investigate calibration, we assessed coverage as the correspondence between the forecast 
probability of an event and the observed frequency of that event. This usage follows previous work 
in epidemic forecasting (Bracher et al., 2021a), and is related to the concept of reliability for binary 
forecasts. We established the accuracy of each model’s prediction boundaries as the coverage of the 
predictive intervals. We calculated coverage at a given interval level  k , where  k ∈ [0, 1] , as the propor-
tion  p  of observations that fell within the corresponding central predictive intervals across locations 
and forecast dates. A perfectly calibrated model would have  p = k  at all 11 levels (corresponding to 
22 quantiles excluding the median). An underconfident model at level  k  would have  p > k , i.e. more 
observations fall within a given interval than expected. In contrast, an overconfident model at level  k  
would have  p < k , i.e. fewer observations fall within a given interval than expected. We here focus on 
coverage at the  k = 0.5  and  k = 0.95  levels.

We also assessed the overall predictive performance of weekly forecasts using the Weighted 
Interval Score~(WIS) across all available quantiles. The WIS represents a parsimonious approach 
to scoring forecasts based on uncertainty represented as forecast values across a set of quantiles 
(Bracher et al., 2021a), and is a strictly proper scoring rule, that is, it is optimal for predictions that 
come from the data- generating model. As a consequence, the WIS encourages forecasters to report 
predictions representing their true belief about the future (Gneiting and Raftery, 2007). Each fore-
cast for a given location and date is scored based on an observed count of weekly incidence, the 
median of the predictive distribution and the predictive upper and lower quantiles corresponding to 
the central predictive interval level.

Not all models provided forecasts for all locations and dates, and we needed to compare predic-
tive performance in the face of various levels of missingness across each forecast target. Therefore 
we calculated a relative WIS. This is a measure of forecast performance which takes into account that 
different teams may not cover the same set of forecast targets (i.e. weeks and locations). The relative 
WIS is computed using a pairwise comparison tournament where for each pair of models a mean 
score ratio is computed based on the set of shared targets. The relative WIS of a model with respect 
to another model is then the ratio of their respective geometric mean of the mean score ratios, such 
that smaller values indicate better performance.

We scaled the relative WIS of each model with the relative WIS of a baseline model, for each fore-
cast target, location, date, and horizon. The baseline model assumes case or death counts stay the 
same as the latest data point over all future horizons, with expanding uncertainty, described previ-
ously in Cramer et al., 2021b. In this study, we report the relative WIS of each model with respect to 
the baseline model.

Retrospective ensemble methods
We retrospectively explored alternative methods for combining forecasts for each target at each 
week. A natural way to combine probability distributions available in the quantile format Genest, 
1992 used here is

 
F −1(α) =

n∑
i=1

wiF−1
i (α),
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Where  F1 . . .Fn  are the cumulative distribution functions of the individual probability distributions (in 
our case, the predictive distributions of each forecast model  i  contributed to the hub), wi are a set 
of weights in  [0, 1] ; and  α  are the quantile levels, such that following notation introduced in Genest, 
1992,

 F −1(α) = inf{t : Fi(t) ≥ α}.  

Different ensemble choices then mainly translate to the choice of weights wi. An arithmetic mean 
ensemble uses weights at  wi = 1/n , where all weights are equal and sum up to 1.

Alternatively, we can choose a set of weights to apply to forecasts before they are combined. 
Numerous options exist for choosing these weights with the aim to maximise predictive performance, 
including choosing weights to reflect each forecast’s past performance (thereby moving from an 
untrained to a trained ensemble). A straightforward choice is so- called inverse score weighting. In this 
case, the weights are calculated as

 
wi = 1

Si
,
  

where  Si  reflects the forecasting skill calculated as the relative WIS of forecaster  i , calculated over all 
available model data, and normalised so that weights sum to 1. This method of weighting was found 
in the US to outperform unweighted scores during some time periods (Taylor and Taylor, 2023) but 
this was not confirmed in a similar study in Germany and Poland (Bracher et al., 2021c).

When constructing ensembles from quantile means, a single outlier can have an oversized effect 
on the ensemble forecast. Previous research has found that a median ensemble, replacing the arith-
metic mean of each quantile with a median of the same values, yields competitive performance while 

Figure 1. Total number of forecasts included in evaluation, by target location, week ahead horizon, and variable.
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maintaining robustness to outlying forecasts (Ray et  al., 2022). Building on this, we also created 
weighted median ensembles using the weights described above and a Harrel- Davis quantile esti-
mator with a beta function to approximate the weighted percentiles (Harrell and Davis, 1982). We 
then compared the performance of unweighted and inverse relative WIS weighted mean and median 
ensembles, comparing the ratio of interval scores between each ensemble model relative to the base-
line model.

Results
For 32 European countries, we collected, visualised, and made available online weekly COVID- 19 fore-
casts and observed data (Sherratt, 2022). Over the whole study period, we collected forecasts from 
48 unique models. Modellers created forecasts choosing from a set of 32 possible locations, four time 
horizons, and two variables, and modellers variously joined and left the Hub over time. This meant 
the number of models contributing to the Hub varied over time and by forecasting target. Using 
all models and the ensemble, we created 2139 forecasting scores, where each score summarises a 
unique combination of forecasting model, variable, country, and week ahead horizon (Figure 1).

Of the total 48 models, we received the most forecasts for Germany, with 29 unique models submit-
ting 1- week case forecasts, while only 12 models ever submitted 4- week case or death forecasts for 
Liechtenstein. Modelling teams also differed in how they expressed uncertainty. Only three models 
provided point forecasts with no estimate of uncertainty around their predictions, while 41 models 
provided the full set of 23 probabilistic quantiles across the predictive distribution for each target.

In this evaluation we included 29 models in comparison to the ensemble forecast (Figure 1). We 
have included metadata provided by modellers in the supplement and online (Sherratt, 2022). In this 
evaluation, at most 15 models contributed forecasts for cases in Germany at the 1 week horizon, with 
an accumulated 592 forecast scores for that single target over the study period. In contrast, deaths in 
Finland at the 2 week horizon saw the smallest number of forecasts, with only 6 independent models 
contributing 24 forecast scores at any time over the 52- week period. Of the 29 models included in this 
evaluation, 5 models provided less than the full set of 23 quantiles, and were excluded when creating 
the ensemble. No ensemble forecast was composed of less than 3 independent models.

We visually compared the absolute performance of forecasts in predicting numbers of incident 
cases and deaths. We observed that forecasts predicted well in times of stable epidemic behaviour, 

Figure 2. Ensemble forecasts of weekly incident cases in Germany over periods of increasing SARS- CoV- 2 variants Delta (B.1.617.2, left) and Omicron 
(B.1.1.529, right). Black indicates observed data. Coloured ribbons represent each weekly forecast of 1–4 weeks ahead (showing median, 50%, and 90% 
probability). For each variant, forecasts are shown over an x- axis bounded by the earliest dates at which 5% and 99% of sequenced cases were identified 
as the respective variant of concern, while vertical dotted lines indicate the approximate date that the variant reached dominance (>50% sequenced 
cases).
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while struggling to accurately predict at longer horizons around inflection points, for example during 
rapid changes in population- level behaviour or surveillance. Forecast models varied widely in their 
ability to predict and account for the introduction of new variants, giving the ensemble forecast over 
these periods a high level of uncertainty. An example of weekly forecasts from the ensemble model 
is shown in Figure 2.

In relative terms, the ensemble of all models performed well compared to both its component 
models and the baseline. By relative WIS scaled against a baseline of 1 (where a score <1 indicates 
outperforming the baseline), the median score of forecasts from the Hub ensemble model was 0.71, 
within an interquartile range of 0.61 at 25% probability to 0.88 at 75% probability. Meanwhile the 
median score of forecasts across all participating models (excluding the Hub ensemble) was 1.04 (IQR 
0.82–1.36).

Across all horizons and locations, the ensemble performed better on scaled relative WIS than 83% 
of forecast scores when forecasting cases (with a total N=886 from 23 unique models), and 91% of 
scores for forecasts of incident deaths (N=763 scores from 20 models). We also saw high performance 
from the ensemble when evaluating against all models including those who did not submit the full set 
of probabilistic quantile predictions (80% for cases with N=1006 scores from 28 models, and 88% for 
deaths, N=877 scores from 24 models).

The performance of individual and ensemble forecasts varied by length of the forecast horizon 
(Figure 3). At each horizon, the typical performance of the ensemble outperformed both the base-
line model and the aggregated scores of all its component models, although we saw wide variation 
between individual models in performance across horizons. Both individual models and the ensemble 
saw a trend of worsening performance at longer horizons when forecasting cases with the median 
scaled relative WIS of the ensemble across locations worsened from 0.62 for 1- week ahead forecasts 
to 0.9 when forecasting 4 weeks ahead. Performance for forecasts of deaths was more stable over one 
through 4 weeks, with median ensemble performance moving from 0.69 to 0.76 across the 4- week 
horizons.

We observed similar trends in performance across horizon when considering how well the ensemble 
was calibrated with respect to the observed data. At 1 week ahead the case ensemble was well cali-
brated (ca. 50% and 95% nominal coverage at the 50% and 95% levels, respectively). This did not 
hold at longer forecast horizons as the case forecasts became increasingly over- confident. Meanwhile, 
the ensemble of death forecasts was well calibrated at the 95% level across all horizons, and the cali-
bration of death forecasts at the 50% level improved with lengthening horizons compared to being 
underconfident at shorter horizons.

The ensemble also performed consistently well in comparison to individual models when fore-
casting across countries (Figure 4). In total, across 32 countries forecasting for 1 through 4 weeks, 
when forecasting cases the ensemble outperformed 75% of component models in 22 countries, and 
outperformed all available models in 3 countries. When forecasting deaths, the ensemble outper-
formed 75% and 100% of models in 30 and 8 countries, respectively. Considering only the the 2- week 
horizon shown in Figure 4, the ensemble of case forecasts outperformed 75% models in 25 countries 
and all models in only 12 countries. At the 2- week horizon for forecasts of deaths, the ensemble 
outperformed 75% and 100% of its component models in 30 and 26 countries, respectively.

We considered alternative methods for creating ensembles from the participating forecasts, using 
either a mean or median to combine either weighted or unweighted forecasts. We evaluated each 
alternative ensemble model against the baseline model, taking the mean score ratio across all targets 
(Table  1). Across locations we observed that the median outperformed the mean across all one 
through 4 week horizons and both cases and death targets, for all but cases at the 1 week horizon. 
This held regardless of whether the component forecasts were weighted or unweighted by their indi-
vidual past performance. Between methods of combination, weighting made little difference to the 
performance of the median ensemble, but appeared to improve performance of a mean ensemble in 
forecasting deaths.

Discussion
We collated 12 months of forecasts of COVID- 19 cases and deaths across 32 countries in Europe, 
collecting from multiple independent teams and using a principled approach to standardising both 
forecast targets and the predictive distribution of forecasts. We combined these into an ensemble 
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forecast and compared the relative performance of forecasts between models, finding that the 
ensemble forecasts outperformed most individual models across all countries and horizons over time.

Across all models we observed that forecasting changes in trend in real time was particularly chal-
lenging. Our study period included multiple fundamental changes in viral-, individual-, and population- 
level factors driving the transmission of COVID- 19 across Europe. In early 2021, the introduction of 
vaccination started to change population- level associations between infections, cases, and deaths 
(European Centre for Disease Prevention and Control, 2021b), while the Delta variant emerged 
and became dominant (European Centre for Disease Prevention and Control, 2021a). Similarly from 

Figure 3. Performance of short- term forecasts aggregated across all individually submitted models and the Hub 
ensemble, by horizon, forecasting cases (left) and deaths (right). Performance measured by relative weighted 
interval score scaled against a baseline (dotted line, 1), and coverage of uncertainty at the 50% and 95% levels. 
Boxplot, with width proportional to number of observations, show interquartile ranges with outlying scores as 
faded points. The target range for each set of scores is shaded in yellow.
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Figure 4. Performance of short- term forecasts across models and median ensemble (asterisk), by country, forecasting cases (top) and deaths (bottom) 
for 2- week ahead forecasts, according to the relative weighted interval score. Boxplots show interquartile ranges, with outliers as faded points, and the 
ensemble model performance is marked by an asterisk. y- axis is cut- off to an upper bound of 4 for readability.

Table 1. Predictive performance of main ensembles, as measured by the mean ratio of interval 
scores against the baseline ensemble.

Horizon Weighted mean Weighted median Unweighted mean Unweighted median

Cases

1 week 0.63 0.64 0.61 0.64

2 weeks 0.72 0.71 0.69 0.69

3 weeks 0.82 0.76 0.82 0.72

4 weeks 1.07 0.86 1.12 0.78

Deaths

1 week 0.65 0.61 1.81 0.61

2 weeks 0.58 0.54 1.29 0.54

3 weeks 0.64 0.57 1.17 0.53

4 weeks 0.82 0.67 0.84 0.62

92



 Research article      Epidemiology and Global Health

Sherratt et al. eLife 2023;12:e81916. DOI: https://doi.org/10.7554/eLife.81916  12 of 19

late 2021 we saw the interaction of individually waning immunity during the emergence and global 
spread of the Omicron variant (European Centre for Disease Prevention and Control, 2022b). 
Neither the extent nor timing of these factors were uniform across European countries covered by 
the Forecast Hub (European Centre for Disease Prevention and Control, 2023). This meant that 
the performance of any single forecasting model depended partly on the ability, speed, and precision 
with which it could adapt to new conditions for each forecast target.

We observed a contrast between a more stable performance of forecasting deaths further into the 
future compared to forecasts of cases. Previous work has found rapidly declining performance for case 
forecasts with increasing horizon (Cramer et al., 2021b; Castro et al., 2020), while death forecasts 
can perform well with up to 6 weeks lead time (Friedman et al., 2021). We can link this to the specific 
epidemic dynamics in this study.

First, COVID- 19 has a typical serial interval of less than a week (Alene et al., 2021). This implies 
that case forecasts of more than 2 weeks only remain valid if rates of both transmission and detection 
remain stable over the entire forecast horizon. In contrast, we saw rapid changes in epidemic dynamics 
across many countries in Europe over our study period, impacting the longer term case forecasts.

Second, we can interpret the higher reliability of death forecasts as due to the different lengths and 
distributions of time lags from infection to case and death reporting (Jin, 2021). For example, a spike 
in infections may be matched by a consistently sharp increase in case reporting, but a longer tailed 
distribution of the subsequent increase in death reports. This creates a lower magnitude of fluctuation 
in the time- series of deaths compared to that of cases. Similarly, surveillance data for death reporting 
is substantially more consistent, with fewer errors and retrospective corrections, than case reporting 
(Català et al., 2021).

Third, we also note that the performance of trend- based forecasts may have benefited from the 
slower changes to trends in incident deaths caused by gradually increasing vaccination rates. These 
features allow forecasters to incorporate the effect of changes in transmission more easily when fore-
casting deaths, compared to cases.

We found the ensemble in this study continued to outperform both other models and the baseline 
at up to 4 weeks ahead. Our results support previous findings that ensemble forecasts are the best or 
nearly the best performing models with respect to absolute predictive performance and appropriate 
coverage of uncertainty (Funk et al., 2020; Viboud et al., 2018; Cramer et al., 2021b). While the 
ensemble was consistently high performing, it was not strictly dominant across all forecast targets, 
reflecting findings from previous comparable studies of COVID- 19 forecasts (Bracher et al., 2021c; 
Brooks, 2020). Our finding suggests the usefulness of an ensemble as a robust summary when fore-
casting across many spatio- temporal targets, without replacing the importance of communicating the 
full range of model predictions.

When exploring variations in ensemble methods, we found that the choice of median over means 
yielded the most consistent improvement in predictive performance, regardless of the method of 
weighting. Other work has supported the importance of the median in providing a stable forecast 
that better accounts for outlier forecasts than the mean (Brooks, 2020), although this finding may be 
dependent on the quality of the individual forecast submissions. In contrast, weighing models by past 
performance did not result in any consistent improvement in performance. This is in line with existing 
mixed evidence for any optimal ensemble method for combining short term probabilistic infectious 
disease forecasts. Many methods of combination have performed competitively in analyses of fore-
casts for COVID- 19 in the US, including the simple mean and weighted approaches outperforming 
unweighted or median methods (Taylor and Taylor, 2023). This contrasts with later analyses finding 
weighted methods to give similar performance to a median average (Ray et al., 2020; Brooks, 2020). 
We can partly explain this inconsistency if performance of each method depends on the outcome 
being predicted (cases, deaths), its count (incident, cumulative) and absolute level, the changing 
disease dynamics, and the varying quality and quantity of forecasting teams over time.

We note several limitations in our approach to assessing the relative performance of an ensemble 
among forecast models. While we have described differences in model scores, we have not used any 
formal statistical test for comparing forecast scores, such as the Diebold- Mariano test (Diebold and 
Mariano, 1995), recognising that it is unclear how this is best achieved across many models. Our 
results are the outcome of evaluating forecasts against a specific performance metric and baseline, 
where multiple options for evaluation exist and the choice reflects the aim of the evaluation process. 
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Further, our choice of baseline model affects the given performance scores in absolute terms, and 
more generally the choice of appropriate baseline for epidemic forecast models is not obvious when 
assessing infectious disease forecasts. The model used here is supported by previous work (Cramer 
et  al., 2021b), yet previous evaluation in a similar context has suggested that choice of baseline 
affects relative performance in general (Bracher et al., 2021b), and future research should be done 
on the best choices of baseline models in the context of infectious disease epidemics.

Our assessment of forecast performance may further have been inaccurate due to limitations in the 
observed data against which we evaluated forecasts. We sourced data from a globally aggregated 
database to maintain compatibility across 32 countries (Dong et al., 2020). However, this made it 
difficult to identify the origin of lags and inconsistencies between national data streams, and to what 
extent these could bias forecasts for different targets. In particular, we saw some real time data revised 
retrospectively, introducing bias in either direction where the data used to create forecasts was not 
the same as that used to evaluate it. We attempted to mitigate this by using an automated process for 
determining data revisions, and excluding forecasts made at a time of missing, unreliable, or heavily 
revised data. We also recognise that evaluating forecasts against updated data is a valid alternative 
approach used elsewhere (Cramer et al., 2021b). More generally it is unclear if the expectation of 
observation revisions should be a feature built into forecasts. Further research is needed to under-
stand the perspective of end- users of forecasts in order to assess this.

The focus of this study was describing and summarising an ensemble of many models. We note 
that we have little insight into the individual methods and wide variety of assumptions that modellers 
used. While we asked modellers to provide a short description of their methods, we did not create a 
rigorous framework for this, and we did not document whether modellers changed the methods for 
a particular submitted model over time. Both the content of and variation in modelling methods and 
assumptions are likely to be critical to explaining performance, rather than describing or summarising 
it. Exploring modellers’ methods and relating this to forecast performance will be an important area 
of future work.

In an emergency setting, access to visualised forecasts and underlying data is useful for researchers, 
policymakers, and the public (CDC, 2020). Previous European multi- country efforts to forecast 
COVID- 19 have included only single models adapted to country- specific parameters (Aguas et al., 
2020; Adib et al., 2021; Agosto et al., 2021).

The European Forecasting Hub acted as a unique tool for creating an open- access, cross- country 
modelling network, and connecting this to public health policy across Europe. By opening participa-
tion to many modelling teams and with international high participation, we were able to create robust 
ensemble forecasts across Europe. This also allows comparison across forecasts built with different 
interpretations of current data, on a like for like scale in real time. The European Hub has supported 
policy outputs at an international, regional, and national level, including Hub forecasts cited weekly 
in ECDC Communicable Disease Threats Reports (European Centre for Disease Prevention and 
Control, 2022a).

For forecast producers, an easily accessible comparison between results from different methods 
can highlight individual strengths and weaknesses and help prioritise new areas of work. Collating 
time- stamped predictions ensures that we can test true out- of- sample performance of models and 
avoid retrospective claims of performance. Testing the limits of forecasting ability with these compar-
isons forms an important part of communicating any model- based prediction to decision makers. For 
example, the weekly ECDC Communicable Disease Threats reports include the specific results of this 
work by qualitatively highlighting the greater uncertainty around case forecasts compared to death 
forecasts.

This study raises many further questions which could inform epidemic forecast modellers and users. 
The dataset created by the European Forecast Hub is an openly accessible, standardised, and exten-
sively documented catalogue of real time forecasting work from a range of teams and models across 
Europe (European Covid- 19 Forecast Hub, 2023b), and we recommend its use for further research 
on forecast performance. In the code developed for this study, we provide a worked example of 
downloading and using both the forecasts and their evaluation scores (covid19- forecast- hub- europe, 
2022).

Future work could explore the impact on forecast models of changing epidemiology at a broad 
spatial scale by combining analyses of trends and turning points in cases and deaths with forecast 
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performance, or extending to include data on vaccination, variant, or policy changes over time. There 
is also much scope for future research into methods for combining forecasts to improve performance 
of an ensemble. This includes altering the inclusion criteria of forecast models based on different 
thresholds of past performance, excluding or including only forecasts that predict the lowest and 
highest values (trimming) (Taylor and Taylor, 2023), or using alternative weighting methods such as 
quantile regression averaging (Funk et al., 2020). Exploring these questions would add to our under-
standing of real time performance, supporting and improving future forecasting efforts.

We see additional scope to adapt the Hub format to the changing COVID- 19 situation across 
Europe. We have extended the Forecast Hub infrastructure to include short term forecasts for hospi-
talisations with COVID- 19, which is a challenging task due to limited data across the locations covered 
by the hub. As the policy focus shifts from immediate response to anticipating changes brought by 
vaccinations or the geographic spread of new variants (European Centre for Disease Prevention 
and Control, 2023), we are also separately investigating models for longer term scenarios in addi-
tion to the short term forecasts in a similar framework to existing scenario modelling work in the US 
(Borchering et al., 2021).

In conclusion, we have shown that during a rapidly evolving epidemic spreading through multiple 
populations, an ensemble forecast performed highly consistently across a large matrix of forecast 
targets, typically outperforming the majority of its separate component models and a naive baseline 
model. In addition, we have linked issues with the predictability of short- term case forecasts to under-
lying COVID- 19 epidemiology, and shown that ensemble methods based on past model performance 
were unable to reliably improve forecast performance. Our work constitutes a step towards both 
unifying COVID- 19 forecasts and improving our understanding of them.
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Supplement: EPIFORGE reporting checklist

Section of manuscript Item Checklist item Reported on page
Title/Abstract 1 Describe the study as forecast or prediction 

research in at least the title or abstract
1

Introduction 2 Define the purpose of study and 
forecasting targets

4

Methods 3 Fully document the methods 4,5,6,7,8
Methods 4 Identify whether the forecast was 

performed prospectively, in real time, 
and/or retrospectively

5

Methods 5 Explicitly describe the origin of input source 
data, with references

5

Methods 6 Provide source data with publication, or 
document reasons as to why this was not 
possible

see Github epiforecasts/euro-hub-ensemble

Methods 7 Describe input data processing procedures 
in detail

5,6

Methods 8 State and describe the model type, and 
document model assumptions, including 
references

5,6, Supplement Table 1

Methods 9 Make the model code available, or 
document the reasons why this was not 
possible

see Github epiforecasts/euro-hub-ensemble

Methods 10 Describe the model validation, and justify 
the approach

5,6

Methods 11 Describe the forecast accuracy evaluation 
method used, with justification

6,7

Methods 12 Where possible, compare model results to 
a benchmark or other comparator model, 
with justification of comparator choice

6,7

Methods 13 Describe the forecast horizon, with 
justification of its length

5

Results 14 Present and explain uncertainty of 
forecasting results

8,9,10,11,12

Results 15 Briefly summarize the results in 
nontechnical terms, including a 
nontechnical interpretation of forecast 
uncertainty

12,13,14

Results 16 If results are published as a data object, 
encourage a time-stamped version number

see Github epiforecasts/euro-hub-ensemble

Discussion 17 Describe the weaknesses of the forecast, 
including weaknesses specific to data 
quality and methods

12,13,14

Discussion 18 If the research is applicable to a specific 
epidemic, comment on its potential 
implications and impact for public health 
action and decision-making

14,15

Discussion 19 If the research is applicable to a specific 
epidemic, comment on how generalizable 
it may be across populations

15
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Team Model Authors Methods Website Metadata
BIOCOMSC BIOCOMSC-

Gompertz
Martí Català, Enric Álvarez, 
Sergio Alonso, Daniel López, 
Clara Prats

Empirical model based on cases and deaths 
dynamics.

https://biocomsc.upc.edu/en
/covid-19

https://raw.githubusercontent.com/epif
orecasts/covid19-forecast-hub-
europe/main/model-
metadata/BIOCOMSC-Gompertz.yml

University of Cologne 
Covid Metrics

CovidMetrics-
epiBATS

Tom Zimmermann, Arne Rodloff Forecasts are based on TBATS - models (DeLivera, 
Hyndman and Snyder (2011)) and are updated daily 
for each German state.

https://tomz.shinyapps.io/cor
onaLandkreise/

https://raw.githubusercontent.com/epif
orecasts/covid19-forecast-hub-
europe/main/model-
metadata/CovidMetrics-epiBATS.yml

Epiforecasts / London 
School of Hygiene and 
Tropical Medicine

epiforecasts-
EpiNow2

Nikos Bosse, Sam Abbott, 
Sebastian Funk

Semi-mechanistic estimation of the time-varying 
reproduction number for latent infections mapped to 
reported cases/deaths.

https://epiforecasts.io/EpiNo
w2

https://raw.githubusercontent.com/epif
orecasts/covid19-forecast-hub-
europe/main/model-
metadata/epiforecasts-EpiNow2.yml

epiforecasts epiforecasts-
weeklygrowth

Sam Abbott A Bayesian autoregressive model using weekly 
incidence data, application of the forecast.vocs R 
package.

https://samabbott.co.uk https://raw.githubusercontent.com/epif
orecasts/covid19-forecast-hub-
europe/main/model-
metadata/epiforecasts-
weeklygrowth.yml

epiMOX epiMOX-
SUIHTER

Giovanni Ardenghi, Giovanni 
Ziarelli, Luca Dede', Nicola 
Parolini, Alfio Quarteroni

Compartmental model SUIHTER https://www.epimox.polimi.it https://raw.githubusercontent.com/epif
orecasts/covid19-forecast-hub-
europe/main/model-metadata/epiMOX-
SUIHTER.yml

European COVID-19 
Forecast Hub

EuroCOVIDhub-
ensemble

Katharine Sherratt, Nikos Bosse, 
Sebastian Funk

An ensemble, or model average, of submitted 
forecasts to the European COVID-19 Forecast Hub.

https://covid19forecasthub.e
u/

https://raw.githubusercontent.com/epif
orecasts/covid19-forecast-hub-
europe/main/model-
metadata/EuroCOVIDhub-ensemble.yml

Frankfurt Institute for 
Advanced Studies & 
Forschungszentrum 
Jülich

FIAS_FZJ-
Epi1Ger

Maria V. Barbarossa, Jan 
Fuhrmann, Stefan Krieg, Jan H. 
Meinke

An extended SEIR model with additional 
compartments for undetected cases

https://www.fz-
juelich.de/SharedDocs/Meldu
ngen/IAS/JSC/DE/2021/2021-
01-covid-
19.html;jsessionid=F4D5FB40
27E871A6F4C2FCAF0F08FC3
5

https://raw.githubusercontent.com/epif
orecasts/covid19-forecast-hub-
europe/main/model-
metadata/FIAS_FZJ-Epi1Ger.yml
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Helmholtz Zentrum 
fuer 
Infektionsforschung

HZI-
AgeExtendedSE
IR

Isti Rodiah, Berit Lange, Pratizio 
Vanella, Alexander Kuhlmann, 
Wolfgang Bock

Deterministic SEIR type model https://www.helmholtz-
hzi.de/en/nc/research/resear
ch-topics/bacterial-and-viral-
pathogens/epidemiology/tea
m/

https://raw.githubusercontent.com/epif
orecasts/covid19-forecast-hub-
europe/main/model-metadata/HZI-
AgeExtendedSEIR.yml

ICM / University of 
Warsaw

ICM-
agentModel

Rafał Bartczuk, Łukasz Górski, 
Magdalena Gruziel-Słomka, 
Artur Kaczorek, Jan Kisielewski, 
Antoni Moszyński, Karol 
Niedzielewski, Jędrzej 
Nowosielski, Maciej Radwan, 
Franciszek Rakowski, Marcin 
Semeniuk, Jakub Zieliński

Agent-based model https://covid-
19.icm.edu.pl/en/model-
description/

https://raw.githubusercontent.com/epif
orecasts/covid19-forecast-hub-
europe/main/model-metadata/ICM-
agentModel.yml

IEM Health IEM_Health-
CovidProject

Brad Suchoski, Steve Stage, Heidi 
Gurung, Sid Baccam

SEIR model projections for daily incident confirmed 
COVID cases and deaths by using AI to fit actual 
cases observed.

https://iem.com/ https://raw.githubusercontent.com/epif
orecasts/covid19-forecast-hub-
europe/main/model-
metadata/IEM_Health-CovidProject.yml

ILM ILM-EKF Stefan Heyder, Thomas Hotz Extended Kalman filter based on reproduction 
equation

https://github.com/Stochasti
k-TU-Ilmenau

https://raw.githubusercontent.com/epif
orecasts/covid19-forecast-hub-
europe/main/model-metadata/ILM-
EKF.yml

Fraunhofer Institute 
for Industrial 
Mathematics ITWM

itwm-dSEIR Jan Mohring, Neele Leithäuser, 
Michael Helmling

Integral equation model based on age cohorts taking 
into account vaccination and testing. The 
parameters are adjusted to the counted cases and 
deaths.

https://www.itwm.fraunhofer
.de/

https://raw.githubusercontent.com/epif
orecasts/covid19-forecast-hub-
europe/main/model-metadata/itwm-
dSEIR.yml

ITWW ITWW-
county_repro

Przemyslaw Biecek, Viktor 
Bezborodov, Marcin Bodych, Jan 
Pablo Burgard, Stefan Heyder, 
Thomas Hotz, Tyll Krüger

Forecasts of county level incidence based on 
regional reproduction numbers.

https://github.com/Stochasti
k-TU-Ilmenau

https://raw.githubusercontent.com/epif
orecasts/covid19-forecast-hub-
europe/main/model-metadata/ITWW-
county_repro.yml

JBUD JBUD-HMXK Jozef Budzinski Heavily modified infection-age SIR-X model with 
waning immunity, vaccinations, seasonality and 
undetected cases. 

https://joebud.github.io/covi
d-19-analyses/

https://raw.githubusercontent.com/epif
orecasts/covid19-forecast-hub-
europe/main/model-metadata/JBUD-
HMXK.yml
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MOCOS group MOCOS-
agent1

Marek Bawiec, Marcin Bodych, 
Tyll Krueger, Tomasz Ozanski, 
Barbara Pabjan, Agata Migalska, 
Przemyslaw Biecek, Viktor 
Bezborodov, Ewa Szczurek, 
Ewaryst Rafajłowicz, Ewa 
Rafajłowicz, Wojciech Rafajłowicz

Agent-based microsimulation model https://mocos.pl/ https://raw.githubusercontent.com/epif
orecasts/covid19-forecast-hub-
europe/main/model-metadata/MOCOS-
agent1.yml

Masaryk University MUNI-ARIMA Andrea Kraus, David Kraus ARIMA model with outlier detection fitted to 
transformed weekly aggregated series.

https://krausstat.shinyapps.i
o/covid19global/

https://raw.githubusercontent.com/epif
orecasts/covid19-forecast-hub-
europe/main/model-metadata/MUNI-
ARIMA.yml

Department of 
Mathematics and 
Statistics Masaryk 
University Team

MUNI_DMS-
SEIAR

Veronika Eclerova, Lenka 
Pribylova

SEIAR model with A compartment of absent 
unobserved infected estimated from hospital data 
with incorporated mobility data dependence; 
optimized to the compartment of all exposed 
(unobserved included)

https://webstudio.shinyapps.i
o/MAMES/

https://raw.githubusercontent.com/epif
orecasts/covid19-forecast-hub-
europe/main/model-
metadata/MUNI_DMS-SEIAR.yml

Grzegorz Redlarski PL_GRedlarski-
DistrictsSum

Grzegorz Redlarski Modified SIR method, applied to all districts. 
Forecasts for districts are summed up.

https://docs.google.com/spre
adsheets/d/e/2PACX-
1vRpH4yhKRts7Co5tydhZhojI
PTcTTybms1PqJ9j1tmSBzzPLo
U2U9XjUWDwiKYxnE6gMLayl
71rpGC8/pubhtml?gid=49325
1550&single=true

https://raw.githubusercontent.com/epif
orecasts/covid19-forecast-hub-
europe/main/model-
metadata/PL_GRedlarski-
DistrictsSum.yml

prolix prolix-euclidean Loïc Pottier Offsets obtained by correlations, best linear 
approximation of reproduction rates (using 
vaccination  approximation) by least euclidean 
distance, and linear prediction.

https://cp.lpmib.fr/medias/co
vid19/_synthese.html

https://raw.githubusercontent.com/epif
orecasts/covid19-forecast-hub-
europe/main/model-metadata/prolix-
euclidean.yml

Robert Walraven RobertWalrave
n-ESG

Robert Walraven Multiple skewed gaussian distribution peaks fit to 
raw data

http://rwalraven.com/COVID
19

https://raw.githubusercontent.com/epif
orecasts/covid19-forecast-hub-
europe/main/model-
metadata/RobertWalraven-ESG.yml
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Swiss Data Science 
Center / University of 
Geneva

SDSC_ISG-
TrendModel

Ekaterina Krymova, Dorina 
Thanou, Benjamin Bejar Haro, 
Tao Sun, Gavin Lee, Elisa 
Manetti, Christine Choirat, 
Antoine Flahault, Guillaume 
Obozinski

The Trend Model predicts daily cases and deaths 
using linear extrapolation on the linear or log scale of 
the underlying trend estimated by a robust LOESS 
seasonal-trend decomposition model.

https://renkulab.shinyapps.io
/COVID-19-Epidemic-
Forecasting/

https://raw.githubusercontent.com/epif
orecasts/covid19-forecast-hub-
europe/main/model-
metadata/SDSC_ISG-TrendModel.yml

Statgroup19 Statgroup19-
richards

Pierfrancesco Alaimo Di Loro, 
Fabio Divino, Alessio Farcomeni, 
Giovanna Jona Lasinio, Antonello 
Maruotti, Marco Mingione, 
Gianfranco Lovison

Richards' curve based generalized growth model https://statgroup19.shinyapp
s.io/Covid19App/

https://raw.githubusercontent.com/epif
orecasts/covid19-forecast-hub-
europe/main/model-
metadata/Statgroup19-richards.yml

Statgroup19 Statgroup19-
spatialrichards

Pierfrancesco Alaimo Di Loro, 
Fabio Divino, Alessio Farcomeni, 
Giovanna Jona Lasinio, Antonello 
Maruotti, Marco Mingione, 
Gianfranco Lovison

Richards' curve based generalized growth model 
taking into account spatial dependence

https://statgroup19.shinyapp
s.io/Covid19App/

https://raw.githubusercontent.com/epif
orecasts/covid19-forecast-hub-
europe/main/model-
metadata/Statgroup19-
spatialrichards.yml

Universidad Carlos III 
de Madrid

UC3M-
EpiGraph

David E. Singh, Miguel Guzman 
Merino, Maria Cristina 
Marinescu, Jesus Carretero, 
Alberto Cascajo Garcia

Agent-based parallel simulator that models 
individual interactions extracted from social 
networks and demographical data.

https://www.arcos.inf.uc3m.
es/epigraph/

https://raw.githubusercontent.com/epif
orecasts/covid19-forecast-hub-
europe/main/model-metadata/UC3M-
EpiGraph.yml

University of Ljubljana, 
Faculty of Health 
Sciences Team

ULZF-
SEIRC19SI

Janez Zibert SEIHR model extended with compartments for 
hospitals, intensive care units, asymptomatic cases, 
separate submodels for vaccinated and 
unvaccinated, divided to 5 age subgroups of 
population

https://apps.lusy.fri.uni-lj.si https://raw.githubusercontent.com/epif
orecasts/covid19-forecast-hub-
europe/main/model-metadata/ULZF-
SEIRC19SI.yml

UMass-Amherst UMass-
MechBayes

Dan Sheldon, Graham Gibson, 
Nick Reich

Bayesian compartmental model with observations 
on cumulative case counts and cumulative deaths. 
Model is fit independently to each state. Model 
includes observation noise and a case detection rate. 

https://github.com/dsheldon/
covid

https://raw.githubusercontent.com/epif
orecasts/covid19-forecast-hub-
europe/main/model-metadata/UMass-
MechBayes.yml

UNED UNED-PreCoV2 José L. Aznarte, César Pérez, José 
Almagro, Pedro Álvarez, Álvaro 
Ortiz, Fernando Blat

Bayesian time series models with ARIMA noise and 
fixed transfer functions for each input.

https://precov2.org https://raw.githubusercontent.com/epif
orecasts/covid19-forecast-hub-
europe/main/model-metadata/UNED-
PreCoV2.yml
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University of Perugia / 
University of Milano-
Bicocca / Università 
della Svizzera Italiana

UpgUmibUsi-
MultiBayes

Francesco Bartolucci, Fulvia 
Pennoni, Antonietta Mira

Bayesian Dirichlet-Multinomial models for counts of 
patients in mutually exclusive and exhaustive 
categories such as hospitalized in regular wards and 
in intensive care units, deceased and recovered

https://github.com/francesco
bartolucci/ARMultinomial

https://raw.githubusercontent.com/epif
orecasts/covid19-forecast-hub-
europe/main/model-
metadata/UpgUmibUsi-MultiBayes.yml

University of Southern 
California

USC-SIkJalpha Ajitesh Srivastava, Frost Tianjian 
Xu

A heterogeneous infection rate model with human 
mobility for epidemic modeling. Our model adapts to 
changing trends and provide predictions of 
confirmed cases and deaths.

https://scc-
usc.github.io/ReCOVER-
COVID-19

https://raw.githubusercontent.com/epif
orecasts/covid19-forecast-hub-
europe/main/model-metadata/USC-
SIkJalpha.yml

University of Virginia, 
Biocomplexity COVID-
19 Response Team

UVA-Ensemble Aniruddha Adiga, Lijing Wang, 
Srinivasan Venkatramanan, 
Akhil Sai Peddireddy, Benjamin 
Hurt, Przemyslaw Porebski, 
Bryan Lewis, Madhav Marathe, 
Jiangzhou Chen, Anil Vullikanti

An ensemble of multiple methods such as auto-
regressive (AR)models with exogenous variables, 
Long short-term memory (lSTM) models,Kalman 
filter and PatchSim (an SEIR model).

https://biocomplexity.virginia
.edu/

https://raw.githubusercontent.com/epif
orecasts/covid19-forecast-hub-
europe/main/model-metadata/UVA-
Ensemble.yml
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A B S T R A C T   

Background: Collaborative comparisons and combinations of epidemic models are used as policy-relevant evi-
dence during epidemic outbreaks. In the process of collecting multiple model projections, such collaborations 
may gain or lose relevant information. Typically, modellers contribute a probabilistic summary at each time-step. 
We compared this to directly collecting simulated trajectories. We aimed to explore information on key epidemic 
quantities; ensemble uncertainty; and performance against data, investigating potential to continuously gain 
information from a single cross-sectional collection of model results. 
Methods: We compared projections from the European COVID-19 Scenario Modelling Hub. Five teams modelled 
incidence in Belgium, the Netherlands, and Spain. We compared July 2022 projections by incidence, peaks, and 
cumulative totals. We created a probabilistic ensemble drawn from all trajectories, and compared to ensembles 
from a median across each model’s quantiles, or a linear opinion pool. We measured the predictive accuracy of 
individual trajectories against observations, using this in a weighted ensemble. We repeated this sequentially 
against increasing weeks of observed data. We evaluated these ensembles to reflect performance with varying 
observed data. 
Results: By collecting modelled trajectories, we showed policy-relevant epidemic characteristics. Trajectories 
contained a right-skewed distribution well represented by an ensemble of trajectories or a linear opinion pool, 
but not models’ quantile intervals. Ensembles weighted by performance typically retained the range of plausible 
incidence over time, and in some cases narrowed this by excluding some epidemic shapes. 
Conclusions: We observed several information gains from collecting modelled trajectories rather than quantile 
distributions, including potential for continuously updated information from a single model collection. The value 
of information gains and losses may vary with each collaborative effort’s aims, depending on the needs of 
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projection users. Understanding the differing information potential of methods to collect model projections can 
support the accuracy, sustainability, and communication of collaborative infectious disease modelling efforts.   

1. Background 

During outbreaks of infectious disease, it is critical to account for the 
uncertainty of future disease incidence in order for public health 
decision-makers to fully evaluate risk (Zelner et al., 2021; Li et al., 
2017). Infectious disease modellers use a variety of approaches to meet 
this demand for information. A common challenge is the representation 
of multiple sources of uncertainty, both within each model as well as 
across separate model projections (McCabe et al., 2021; Swallow et al., 
2022). In recognising this challenge, infectious disease modelling has 
seen an increasing emphasis on both probabilistic modelling methods, 
together with collaborative approaches to modelling (Bracher et al., 
2021a; Reich et al., 2022). 

Probabilistic infectious disease models can address the challenge of 
uncertainty by simulating the complex and changing real-world process 
of disease transmission. Modellers must handle stochasticity in trans-
mission dynamics, often using observed data to estimate model pa-
rameters and latent trajectories that are themselves uncertain. Each such 
model can generate any number of simulated trajectories, and modellers 
choose at what point to conclude there are sufficient iterations to reach a 
stable distribution of possible outcomes. The output of these simulations 
can then be summarised to calculate quantities of interest, such as 
weekly incidence of infections or cases. 

When creating models to characterise the future, modellers have 
often drawn a distinction in the meaning of uncertainty between forecast 
compared to scenario projections (Lipsitch et al., 2011). Forecasts are 
predictions of future epidemic trajectories, and the probabilities 
assigned to different outcomes quantify the belief of the forecaster that 
these may or may not happen. In addition to potential fundamental 
limits to predictability, forecasts are usually reliable for, at best, a few 
generations of transmission (Sherratt et al., 2023) because of unmod-
elled factors affecting future transmission such as behavioural or policy 
changes, heterogeneity in transmission risk, or the emergence of new 
variants of different transmissibility or severity. 

In contrast, scenarios are projections attuned to a particular context 
by being conditioned on specific factors whose futures may not be 
quantitatively predictable, such as options for policy interventions 
(Runge et al., 2023; Rhodes et al., 2020). Probabilities of future out-
comes as stated by scenario models should be interpreted as valid only 
under the specific circumstances given by the scenario but not other-
wise, without specifying any probability of the scenario itself occurring. 
Because of this difference, forecasts can be evaluated by confronting 
them with future data as it becomes available, while this evaluation is 
more challenging for scenarios where predictive performance will al-
ways depend on a combination of adequacy of the chosen assumptions 
(e.g. on pathogen biology, human behaviour and government policy), 
with adequacy of the model in reflecting these assumptions. 

Infectious disease modelling collaborations aim to bring together 
models that project the future using diverse methods (Reich et al., 
2022). Each collaboration sets a clearly defined target for projections, 
communicates this target to multiple independent modellers, and col-
lects model results in a standardised format. This standardisation allows 
for a like-for-like comparison of varying modelling methods’ results and 
accompanying uncertainty. Ensemble methods can then combine results 
across models. Typically, this creates a more comprehensive and robust 
projection (Ray et al., 2020) or reflection of expert judgement (Shea 
et al., 2020). 

Formal, large-scale modelling collaborations have, so far, been used 
for influenza, Ebola, Zika, dengue fever, and COVID-19 (Reich et al., 
2022). In the case of COVID-19, a number of policy-facing research 
groups have set up collaborations to collate forecasts and scenarios 

(Borchering, 2021; Cramer et al., 2021; Funk et al., 2020; Sherratt et al., 
2023), and there is a substantial effort towards expanding the practice of 
ensemble projections of infectious disease spread and burden. Ongoing 
work evaluating these efforts has focused on assessing the output of past 
and current ensemble modelling projects. This has included evaluating 
differing performance among individual models (Viboud et al., 2018; 
Bracher et al., 2021b; Cramer et al., 2022), and a variety of methods for 
creating ensembles from multiple models (Howerton et al., 2023; Ray 
et al., 2020; Sherratt et al., 2023; Taylor and Taylor, 2021). 

The standardised format in which model projections are collected is 
key to meeting such projects’ aims of comparing information from 
multiple models. The most common approach to this is to collect 
descriptive statistics from each model at each given time step. In this 
format, each modeller submits values across a pre-specified set of 
quantiles in order to represent uncertainty in their projection. The 
benefits of this system include that it should accurately represent an 
underlying distribution of outcomes while being storage-efficient 
(Genest, 1992), it is not restricted to probabilistic models producing 
simulations, and it allows for quantitative evaluation against observed 
data (Bracher et al., 2021a). Various methods for subsequent combina-
tion from quantiles depend on the view taken of uncertainty between 
and across model projections (Howerton et al., 2023). 

However, using quantile intervals separately across each time step 
may lose information pertinent to epidemic decision making. As a 
quantile representation provides a summary across trajectories at each 
time step, it has no theoretical continuity through the time-series. This 
does not permit aggregation over time to calculate cumulative totals or 
means, and may misrepresent time-series characteristics including 
epidemic peak size or timing (Juul et al., 2021). Whilst some of these can 
be remedied by also collating quantiles of cumulative quantities, these 
still lose some of the temporal information contained in the full joint 
probability distribution across all future time points. 

An alternative method of collecting output from multiple probabi-
listic models is to collect the individual simulated trajectories produced 
by each modeller. Each simulated trajectory comprises a single value for 
each time step, with modellers contributing some number of these tra-
jectories. Each trajectory retains its own time-series characteristics, and 
these can therefore be summarised across different models. Collecting 
trajectories also creates potential for the analysis and combination of 
each trajectory independently from the originating model’s total output. 
One option could include comparing each trajectory to observed data as 
it becomes available, even after the time of collecting model outputs. 
This would enable creating an ensemble projection that is conditioned 
on the observed accuracy of each individual trajectory. As further 
observed data become available, this ensemble could be updated to 
create a single combined projection that continuously reflects the 
changing performance of each trajectory. This would act similarly to 
methods of particle filtering in continuously conditioning on past 
behaviour. 

We aim to explore aspects of information gains and losses from these 
two methods of collecting multiple model results. We contrast collecting 
a set of simulated trajectories, against collecting a summary at quantile 
intervals of those trajectories. We use the setting of the European 
COVID-19 Scenario Hub, where the use of quantile summaries was 
replaced in mid-2022 by collecting trajectories. These trajectories 
represent random samples from the collection of all possible trajectories 
of each model consistent with a given scenario and the data available up 
to the time at which the simulation was generated. 

In this work, we assess the impact of the collection method when 
seeking information about policy-relevant epidemic characteristics, 
including cumulative totals, timing of peaks, and the extent of 
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uncertainty across multiple models. We then explore the information 
gained by the ability to compare modelled epidemic trajectories to 
observed data as this becomes available over time. We use this to create 
a multi-model ensemble which weights across all available trajectories 
by their past accuracy. This demonstrates the potential to continuously 
gain information from only a single cross-sectional collection of model 
results. Understanding the potential sources of information gains and 
losses when collecting multiple model projections may support 
improving the accuracy, reliability, and communication of collaborative 
infectious disease modelling efforts. 

2. Methods 

2.1. Study setting 

In this work we use projections from Round 2 of the European 
COVID-19 Scenario Modelling Hub (Taylor and Taylor, 2021). The Eu-
ropean COVID-19 Scenario Hub was launched in March 2022 to reflect 
demand for the ECDC to support longer term European policy planning. 
It used the existing US Scenario Hub (Borchering, 2021) as a basis for 
Hub infrastructure and methods. Modelling teams were recruited by 
word of mouth to join a series of collaborative workshops, approxi-
mately fortnightly from March through June 2022. In these sessions 
both policy-focussed colleagues from the ECDC and modelling-focussed 
researchers co-developed a set of four scenarios. Each scenario repre-
sented a combination of two possible epidemiological and policy 
changes that could impact the incidence of COVID-19 across Europe in 
the medium term. 

Teams were asked to project the incidence of COVID-19 infections, 
cases, deaths, and hospitalisations in 32 European countries over the 
next year. To facilitate comparison across models, we identified and 
agreed a common set of key assumptions and parameters to be used by 
all models in each scenario as well as standard data sets to which to 
compare the model outputs where available. Modellers uploaded pro-
jections to a Github repository, and we summarised results across 
models, with a focus on targets with three or more different models. 
Over 2022 this process was repeated four times to explore a variety of 
different scenarios. In total nine separate teams submitted projections, 
with six teams contributing to each round. 

Over June 2022 (Round 2), we specified four scenarios (A-D) as: an 
autumn second booster campaign among the population aged over 60 
(scenarios A/C), or over 18 (scenarios B/D); and future vaccine effec-
tiveness as ‘optimistic’ (equivalent to the effectiveness as of a booster 
vaccine against the Delta SARS-CoV-2 variant; scenarios A/B); or 
‘pessimistic’ (as against variants Omicron BA.4/BA.5/BA.2.75; sce-
narios C/D). Modellers were asked to start their projections from 24th 
July 2022, meaning that even if data were available beyond this date 
they were not to inform calibration of the model. Modellers were asked 
to submit up to 100 simulations, each reflecting a trajectory of weekly 
incidence of reported cases and deaths over time for a given projection 
target. Modellers were informed that data presented on the Johns 
Hopkins University dashboard was to be used for future comparison to 
data (Dong et al., 2020). In practice some of the models were not cali-
brated to reported cases and therefore used symptomatic cases as a 
proxy (see model details in Supplement). Simulations were to represent 
random samples from the distribution of simulation trajectories 
consistent with the given scenario that each modelling team produced. 
We have published full scenario details including shared parameters, all 
teams’ projections, and summary results online (European COVID-19 
Scenario Hub). 

This work specifically focuses on contrasting the sampled simulated 
trajectories with their representation in time-specific quantiles. We 
collected raw data in the form of up to 100 trajectories from each model 
for each projection target. We used these data to retrospectively create a 
marginal fixed-time quantile representation of results from each model 
and target. Following the current submission procedure across COVID- 

19 Modelling Hubs for an individual model, we calculated a median 
and 22 further quantiles for each week using the values of the trajec-
tories in that week, separately for each scenario. We processed all data in 
R with code available online (Sherratt and Funk, 2024). 

2.2. Characterising potential information gains and losses 

First we considered information about key epidemic characteristics. 
At the time the projections were in production, discussion with the ECDC 
modelling team led to an interest in: estimates of incidence over time; 
cumulative values over different periods; and number of distinct peaks, 
size, and timing of peak incidence over the projection period. 

When projections were available, we estimated these characteristics 
from the simulated trajectories. We summed incidence over time to 
produce a cumulative total from each trajectory. We assessed the size of 
the expected burden of each target relative to a known threshold by 
comparing the cumulative projected total to the cumulative total of the 
preceding year. We identified peaks in each simulated trajectory as the 
local maxima in a sliding window of five weeks, using the ggpmisc R 
package (Aphalo, 2023). We chose a sliding window of five weeks to 
capture each distinct peak while avoiding detecting noise in each tra-
jectory. We summarised across the individual peaks detected in each 
trajectory using quantiles at each weekly time-step, to produce a range 
indicating possible peak timing and maximum values across all trajec-
tories. We produced a real-time report of this summary at the time that 
projections became available in July 2022. 

In further retrospective analysis, we compared the use of a standard 
unweighted ensemble to express uncertainty across multiple models in 
the two representations. We created an ensemble projection from first 
combining all individual simulated trajectories with equal weight for 
each scenario, location, and outcome target. Next, we took model- 
specific quantiles from each model’s distribution of trajectories at 
each time point, for each scenario, location, and outcome target. We 
used each set of quantiles to create linear opinion pool ensembles (LOP), 
which use linear extrapolation between the given quantiles to estimate 
the cumulative distribution function in order to then randomly sample 
trajectories to aggregate, again with equal weight; and a quantile- 
average ensemble, which takes the median across the different 
models’ values at each quantile and time step. The LOP and quantile- 
average ensembles have both been used to produce ensemble pro-
jections across multiple epidemiological forecasts (Howerton et al., 
2023; Ray et al., 2020; Sherratt et al., 2023). To assess the difference in 
uncertainty across the two ensembles, we compared the mean of the 
values at each quantile across all time points, outcomes and scenarios. 

Lastly, we evaluated the performance of each simulated trajectory 
against proximity to observed data, and used this to weight an ensemble 
of trajectories (as above). To measure performance, we calculated the 
mean absolute error (MAE) for each trajectory, where the MAE is the 
average of the difference from observed data across all available time 
points for a single projection. We created a weighted ensemble from all 
trajectories for a country (not further separating by scenario or model) 
using the inverse MAE for each trajectory as a weight. To calculate 
weighted quantiles we used a Harrell Davis weighted estimator (Harrell 
and Davis, 1982) from the cNORM R package (v3.0.2) (Lenhard et al., 
2018). As above, we calculated 23 quantiles including the median to 
express uncertainty. 

We repeated this process to create a sequence of ensembles with 
changing weights over time. We created the first weighted ensemble 
after 4 weeks of observed data, and then created consecutive ensembles 
with weights re-calculated weekly to use up to the maximum available 
29 weeks of observed data (to 11 March 2023). This showed varying 
lengths of projections repeatedly conditioned on simulated trajectories’ 
performance against increasing data over time. 

We evaluated the predictive performance of these sequences of 
weighted ensembles. We transformed forecasts and observed data to a 
logarithmic scale, as this allows a more consistent evaluation across 
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varying magnitudes and better reflects the exponential nature of 
epidemic processes (Bosse et al., 2023). We then calculated the weighted 
interval score for each forecast, as a quantitative performance measure 
that evaluates across both the accuracy and the dispersion of probabi-
listic forecasts (Bracher et al., 2021a). In the same way we evaluated the 
unweighted ensemble of trajectories described above, and used this as a 
relative baseline with which to compare the effect of weighting indi-
vidual trajectories on ensemble performance. 

3. Results 

A total of six modelling teams contributed projections for various 
targets to the European COVID-19 Scenario Hub in Round 2. Here we 
focus on multi-model comparison and include only projection targets 
with three contributing models. These targets included 52 weeks’ case 
and death incidence for the Netherlands and Belgium, and 41 weeks’ 
case incidence for Spain. 

Five teams contributed projections for these targets. Three teams 
used compartmental models, one an agent-based model, and one a 
machine learning method (see Supplement). Four models generated 100 
simulated trajectories, and one 96 trajectories (implying a slightly 
smaller weight to this model in trajectory-based aggregates). In total, we 
consider 294,816 data points from 5920 trajectories, where each data 
point is the estimated weekly incidence in a simulated trajectory of an 
outcome in a target country and scenario over up to one year (Fig. 1.i). 

Aggregating across simulated trajectories from multiple models 

allowed access to information about various epidemic characteristics. 
These included cumulative totals, and peak size and timings (see 
contemporaneous report reproduced in the Supplement). By summa-
rising across the peaks of each individual trajectory, we were able to 
create an estimate of uncertainty around the size and timing of peaks for 
each target. We were also able to summarise cumulative outcomes. For 
example, across all 5920 trajectories for all targets and scenarios, 10% 
saw a cumulative total exceeding the preceding year. These epidemic 
characteristics could not be meaningfully estimated from the same re-
sults summarised into quantiles. 

We compared information loss in the aggregation of simulated tra-
jectories into ensemble projections (Fig. 1). We compared an ensemble 
taken from all trajectories (Fig. 1.ii) with a linear opinion pool (not 
shown), and the quantile-average ensemble (Fig. 1.iii). We noted that a 
linear opinion pool ensemble produces near-identical results to taking 
an ensemble directly from trajectories. Across all projection targets, we 
observed substantially increased uncertainty in an ensemble that 
aggregated either directly from trajectories, or via linear opinion pool, 
compared to a quantile-average ensemble. This represented the wider 
variety of epidemic shapes projected by different models. For example, 
the credible interval of projections for Spain included high autumn- 
winter incidence, while for Belgium gave greater credibility to multi-
ple peaks of incidence. These were not observed in the interval pro-
jections of an ensemble derived from models’ quantiles. 

We quantified the range of uncertainty between each ensemble by 
comparing the mean of values at each quantile across all time points and 

Fig. 1. Projections of incidence per 100,000 population, by country (row) and aggregation method (column) showing median, 50%, and 99% probabilistic intervals 
(increasingly shaded ribbons), for each scenario, using: i) no ensemble method (100 simulated trajectories per model, or 96 in case of one of the models); ii) quantile 
intervals of the distribution across all simulated trajectories; ii; a median across each model’s projections at a given quantile interval. We do not show the linear 
opinion pool ensemble here as results are near-identical to the ensemble drawn directly from trajectories (ii)). Scenarios included: an autumn second booster vaccine 
campaign among population aged 18+ (scenarios B & D) or 60+ (scenarios A & C); where vaccine effectiveness is ‘optimistic’ (effectiveness as of a booster vaccine 
against Delta; scenarios A & B) or ‘pessimistic’ (as against BA.4/BA.5/BA.2.75; scenarios C & D). See Supplement for further detail on individual models’ trajectories. 
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scenarios (supplementary figure 1A). All ensembles produced similar 
values around the centre of the distribution, with no noticeable differ-
ence between the median values of each projection. However, across all 
five targets we observed that an ensemble based on either simulated 
trajectories, or an LOP ensemble, produced sharply increasing uncer-
tainty between the 90–98% intervals. For example, at the upper 98% 
probability interval, ensemble projections for cases in Spain averaged 
nearly six times higher incidence when drawn directly from trajectories 
compared to when drawn from a median of three models’ quantiles 
(respectively averaging 1016 and 173 weekly new cases per 100,000 
population). 

We then considered an ensemble of individual trajectories each 
weighted against a sequentially increasing amount of observed data 
(Fig. 2). We note that models used a variety of methods and may have 
been calibrated to alternative data sources (see Supplement). In com-
parison to the unweighted ensemble (shown in grey), we observed 
reduced uncertainty across weighted ensemble projections. Compared 
to conditioning on data up to 16 weeks before, adding 8 weeks of 

additional data in weighting case projections reduced the upper 98% 
bound of uncertainty by at least 5% and up to 30% on average (sup-
plementary figure 1B). The accuracy-weighted contribution of each 
trajectory to an ensemble varied substantially between models and 
targets, and over time. For example, in Spain each trajectory’s weight 
remained stable after mid December 2022, reflecting the data by 
effectively downweighting those trajectories projecting sustained high 
incidence over winter (see Fig. 1i). 

We used this information to create consecutive weekly ensembles, 
with weights updating as increasing observed data became available to 
measure trajectories’ accuracies. In the combined (weighted interval) 
score, forecasts using weighted trajectories generally performed simi-
larly to the unweighted equivalent, with a median relative WIS among 
the weighted ensembles of 0.99 (IQR: 0.89–1.05; supplementary figure 
2). 

When using the full 31 weeks of available data, a weighted ensemble 
performance improved compared to projections made without weight-
ing on accuracy (with a median relative WIS across targets of 0.77 

Fig. 2. Ensemble forecasts of incidence by target, using no weighting (grey ribbon), or 4, 8, and 16 weeks ahead of available data, with available data increasing 
weekly over time (coloured ribbons); showing 50% and 99% credible intervals. Each simulated trajectory started from 30 July 2022 and was weighted using its 
inverse mean absolute error against available data. We used at least 4 and up to 31 weeks of this observed accuracy data. 
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compared to the baseline of 1). However, this improvement was not 
linearly correlated with increasing data, and the relationship varied by 
target (Fig. 3). Weighted forecasts that used only a few data points of 
trajectories’ accuracy performed similarly or poorly compared to the 
unweighted ensemble. 

However, among three targets, using more accuracy data gave a 
stable or consistently improved performance (after 10 weeks for cases in 
Belgium and 17 weeks for cases and deaths in the Netherlands). This was 
also true of cases in Spain, with worse performance compared to the 
unweighted ensemble when using up to 9 weeks of data, and improving 
and then better relative performance after 17 weeks of data, until per-
formance worsened once more after 27 weeks of accuracy data. In 
contrast, forecasts of deaths in Belgium were better with fewer weeks of 
accuracy data, and weighting with between 14 and 26 weeks’ data 
produced a worse performance than the unweighted ensemble of 
trajectories. 

4. Discussion 

A significant part of the value of collaborative infectious disease 
modelling projects comes from the standardisation of model output 
across varying numbers of model teams, methods, and simulations. We 
compared two methods of collecting information from multiple models’ 
projections of an epidemic. We took three scenario models for each of 
five projection targets, and contrasted collecting a sample of up to 100 
simulated trajectories against collecting quantile intervals of those tra-
jectories at each time step. 

We found that collecting simulated trajectories enabled analysis of 
trajectory shapes, peaks, and cumulative total burden. We observed that 
trajectories contained a right-skewed probabilistic distribution, which 
meant that ensembles either directly from trajectories, or using a linear 
opinion pool method, increasingly diverged from the quantile-average 
ensemble in projecting the outer upper limit of the probabilistic distri-
bution. We also found that collecting trajectories could be used to create 

a competitively performing ensemble based on continuous predictive 
performance. 

The common practice of collecting a standardised set of quantile 
intervals has several advantages. Firstly, combining across a set of 
quantiles should accurately represent the underlying distribution 
(Genest, 1992), and we observed that the linear opinion pool (based on a 
combination of quantiles) produced a near-identical ensemble as that 
created directly from combining individual trajectories. This suggests 
that the LOP ensemble may be the best choice for reflecting the widest 
range of uncertainty in settings where model results are only collected in 
quantiles, while noting that in order to create a LOP ensemble quantiles 
of cumulative rather than incident quantities need to be collected 
(Howerton et al., 2023). Furthermore, our results suggest little infor-
mation about uncertainty is lost when using quantile outputs to compare 
the central estimates from different models. This is a useful validation 
for collecting multiple model results in any format when the purpose is 
short-term situational awareness. 

Further advantages include where collecting quantile outputs also 
allows for a broader range of modelling methods, including quantile 
regression, that directly create quantile outputs rather than a joint dis-
tribution over time. Additionally, a single set of quantiles can be held in 
comma-separated value (csv) files of easily manageable size, requiring 
minimal technical knowledge of big data storage solutions or processing. 
This has been important in the past given a lack of readily available skills 
or investment in software for emergency outbreak settings. However this 
argument weakens with mounting evidence that this type of under- 
resourcing hampers outbreak response (Sherratt et al., 2024; Rivers 
et al., 2020). 

An alternative method for multiple model collection is directly col-
lecting models’ trajectories, with the advantage of retaining each tra-
jectory’s time-dependence. We observed greater availability and 
flexibility of accessing information from this method in contrast to 
collecting quantile distributions. This was evident when comparing the 
tails of multiple distributions in a quantile-average ensemble, assessing 

Fig. 3. Predictive performance of weighted ensembles by projection target. Weighted ensembles were created using a weighted median, where the weight of each 
trajectory was determined by its previous accuracy in predicting between 0 and 31 weeks of observed data (x axis). The performance of each ensemble is measured by 
the weighted interval score (WIS); a lower WIS score indicates better performance of the weighted ensemble than the simple unweighted median ensemble of all 
trajectories (reference line at 1). 
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the number of projected waves or the risk of crossing a specific threshold 
such as the burden in the preceding year, or in reevaluating projections 
against reported data. These analyses could also be conducted after 
collecting model outputs, making the method of collecting trajectories 
more flexible to the needs of one or multiple end-users. In particular 
these areas of information are more likely to be relevant to longer term 
preparedness and mitigation. As a result, we suggest the impact of in-
formation gains and losses from model collection may differ depending 
on the aim of a multi-model comparison. 

Our findings comparing quantile with trajectory model outputs are 
compatible with ongoing work addressing issues from the loss of 
epidemic shape. From point forecasts, recent forecasting work has 
created an ensemble from multiple point forecasts in terms of similarity 
to canonical curve shapes (Srivastava et al., 2022). From probabilistic 
models it is also possible to create an ensemble of many trajectories 
using the centrality of each curve as a weight in a curve boxplot (Juul 
et al., 2021). 

We have also demonstrated the potential for unique information 
gains when collecting simulated trajectories by assessing their perfor-
mance against observed data. By conditioning the weight of each tra-
jectory in an ensemble on subsequently observed data, we were able to 
create an ensemble that excluded entire trajectories, or epidemic curves, 
based on dependence to unrealised events. This typically either matched 
or reduced the uncertainty of an unweighted equivalent ensemble, and 
in some settings performed better overall than the unweighted 
equivalent. 

This suggests an additional way in which collaborative modelling 
efforts can respond to changing outbreak dynamics and policy needs. 
For our setting, model results had originally been created based on a set 
of four scenarios relevant to policy decisions to be made in spring/ 
summer 2022. However, given the complex dynamics of disease trans-
mission, no predefined future scenario is likely to accurately predict 
eventual reality. Among four scenarios with deliberately contrasting 
assumptions, most of these assumptions will be disproven by observa-
tion over time. Meanwhile, when scenario modelling outputs are 
collected as quantiles at each time-point, they lose their time- 
dependence and thus cannot be interpreted except in the light of an 
increasingly obsolete scenario context. 

By focussing on individual model simulations in this work, we were 
able to abstract away from the context in which model results were 
created. We weighed each trajectory using only its past accuracy against 
observed data, regardless of the modelling technique, original scenario, 
or parameter values from which it arose. From this we created an 
ensemble that did not reflect any particular scenario assumptions, but 
only the time-varying accuracy of each trajectory. This meant we were 
able to continue to use trajectories in an ongoing evaluation, increasing 
the useful life of the results from a single cross-sectional collection of 
multiple model output. 

This could be particularly useful when repeated rounds of model 
collection are time-intensive or computationally expensive, such as for 
individual-based models, or where personnel resources are constrained 
such as in an ongoing outbreak with potentially many competing pri-
orities. Whilst beyond the scope of this work, future work in this area 
could also investigate model weights in order to rank trajectories from 
each scenario by proximity to observed trajectories and potentially 
interpret this as proximity of the given scenario assumptions to reality. 

We highlight several important limitations to our comparison of in-
formation gains and losses between methods of collecting model output. 
In the first part of this work, we represent an analysis of trajectories that 
reflects our work in real-time response to the needs of policy decision- 
making. We did not consider alternative approaches to time-series 
analysis that would likely make the analysis of trajectories more 
robust, for example in calculations of peaks or wave durations. 

In our comparison to quantile distributions, our method of collecting 
simulated trajectories was not specifically designed for this comparative 
purpose, and as a result our findings are difficult to interpret. In this 

work we did not attempt to characterise how many samples might be 
sufficient to appropriately represent a probabilistic distribution in 
comparison to a quantile representation. For example, in some cases the 
collated trajectories were already subsampled from model runs con-
ducted by individual teams. In contrast, in a situation with low sampling 
sizes of trajectories from each model, a quantile representation might 
provide a more stable representation. 

We suggest that further work should characterise and standardise 
sampling techniques for model simulations in multi-model comparisons. 
Future study designs could focus on collating multiple representations 
(e.g. time-sliced quantiles and trajectories) from contributing teams 
directly for comparison, or collate arbitrary numbers of feasible simu-
lated trajectories and re-weigh according to the number of simulations. 
Our work also demonstrates the importance of investing in and devel-
oping capacity to store and use simulation outputs rather than fixed- 
time quantile probabilities for well founded intercomparison model-
ling projects. 

To conclude, we observed several information gains from collecting 
modelled trajectories rather than summarised quantile distributions. We 
highlight the potential to create continuous new information from a 
single collection of model output. Working from combined simulations 
offers the opportunity to explore creating ensembles by the shape of 
epidemic curve that can be updated over time, and for more detailed 
quantitative evaluations against observed data, such as in projected 
peaks or cumulative totals. We believe our findings apply whether 
projections are conditioned on the context of the present (as in fore-
casts), or on schematic futures (as in scenarios). However, the value of 
different information gains and losses may vary with the aims of each 
collaborative effort, depending on the requirements and flexibility 
required by projection users. Understanding potential information gains 
and losses when collecting model projections can support the accuracy, 
reliability, sustainability, and communication of collaborative infectious 
disease modelling efforts. 
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Supplementary Information

SI Figure 1

SI Figure 1. Mean central prediction intervals at increasing distances from the median. The 52-week mean
of incidence per 100,000 population across all time points and scenarios, showing mean central prediction
intervals at increasing distances from the median (interval width), by aggregation method (A) or weighting
(B). The median estimate for each ensemble has 0 interval width (x-axis), with uncertainty increasing until
an interval width at 0.98 represents the 1%-99% credibility interval around the median.
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SI Figure 2

SI Figure 2. Distribution of forecast performance scores (relative WIS), of forecasts from model trajectories
weighted using 0 through 31 weeks’ available data. Performance is compared to an unweighted ensemble
(reference line at 1).

SI Table 1

Team Methods
ECDC
ECDC-CM_ONE Discrete-time, deterministic, mean-field SEIR-type compartmental model

on metapopulation level. Population divided by age, vaccination status,
and previous recovery; incl. seasonality, BA2 & behavior.

Dutch National Institute
of Public Health and the
Environment (RIVM)
RIVM-vacamole Deterministic, age-structured SEIR model, accounting for differences in

susceptibility/infectiousness by age, seasonality, contact patterns, modes
of vaccine protection, and waning immunity.

SIMID
SIMID-SCM Stochastic age-structured discrete time extended compartmental model
Universidad Carlos III de
Madrid
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Team Methods
UC3M-EpiGraph Agent-based parallel simulator that models individual interactions

extracted from social networks and demographical data.
University of Southern
California
USC-SIkJalpha Uses SIKJalpha which models temporally varying infection, death, and

hospitalization rates. Learning is performed by reducing the problem to
multiple simple linear regression problems.

SI Table 1. Teams that contributed models to Round 2 of the European Scenario Hub, with self-described
methods and links to further information. See also:

• Full model metadata, at: https://github.com/covid19-forecast-hub-europe/covid19-scenario-hub-
europe/tree/main/model-metadata

• Information about each model’s assumptions for Round 2, at: https://github.com/covid19-forecast-
hub-europe/covid19-scenario-hub-europe/tree/main/model-abstracts/2022-07-24

Round 2 report

The following pages are the original website reporting for the European Scenario Hub Round 2 as of July
2022.

The report is currently (January 2023) available at: https://covid19scenariohub.eu/report2.html

Code to generate this report is available at: https://github.com/european-modelling-hubs/covid19-scenario-
hub-europe-website/blob/main/report2.Rmd
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Round 2
Scenarios
We asked teams of researchers across Europe to use quantitative models to project COVID-19
outcomes for 32 European countries over the next year. In order to explore different sets of
assumptions about drivers of the pandemic, we asked teams to vary four sets of parameters. We can
describe this in a 2x2 scenario specification:

Age 60+ booster campaign
2nd* booster recommended
for 60+
Uptake starts 15th
September, and reaches
50% coverage by 15th
December

Age 18+ booster campaign
2nd* booster recommended
for general population, ages
18+
Uptake starts 15th
September, and reaches
50% coverage by 15th
December

Optimistic vaccine effectiveness
Increased booster vaccine
effectiveness to that seen against
Delta variant

Scenario A Scenario B

Pessimistic vaccine effectiveness
Reduced booster vaccine
effectiveness against infection from
BA.4/BA.5/BA.2.75 variants

Scenario C Scenario D

See also the full scenario details (https://github.com/covid19-forecast-hub-europe/covid19-scenario-
hub-europe/wiki/Round-2) for more detail on the common set of assumptions teams used to create
their models.

In Round 2, we asked modellers to start their projections from the 2022-07-24. Data after this date
were not included, and as a result, model projections are unlikely to fully account for later information
on the changing variants or behavioural patterns.

In this report we only show results from countries with at least 3 models.

Current situation
We consider vaccination rates in countries for which multiple teams of modellers contributed
projections.
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Participating teams
6 models contributed scenario projections to Round 2.

Models
Participating teams by number of countries and horizon

Team Countries Weeks

USC-SIkJalpha 31 52

ECDC-CM_ONE 28 53

MODUS_Covid-Episim 1 53

RIVM-vacamole 1 53

SIMID-SCM 1 52

UC3M-EpiGraph 1 41

Countries
Number of independent model projections for each target variable and location

Code Country Infection Case Hosp Icu Death

BE Belgium 1 3 2 1 3

DE Germany 1 2 2 0 1

ES Spain 1 3 2 0 2
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Code Country Infection Case Hosp Icu Death

NL Netherlands 1 3 2 1 3

Cumulative outcomes
For each model and scenario, we compare the total number of outcomes over the entire projection
period as a % of the total country population. We compared the cumulative number of projected
outcomes to the cumulative total over one year before projections started (July 2021 to July 2022).

Death

Scenarios: Autumn second booster campaign among population aged ‘18+’ or ‘60+’; Vaccine
effectiveness is ‘optimistic’(effectiveness as of a booster vaccine against Delta) or ‘pessimistic’ (as
against BA.4/BA.5/BA.2.75)
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Case

Scenarios: Autumn second booster campaign among population aged ‘18+’ or ‘60+’; Vaccine
effectiveness is ‘optimistic’(effectiveness as of a booster vaccine against Delta) or ‘pessimistic’ (as
against BA.4/BA.5/BA.2.75)
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Infection

Scenarios: Autumn second booster campaign among population aged ‘18+’ or ‘60+’; Vaccine
effectiveness is ‘optimistic’(effectiveness as of a booster vaccine against Delta) or ‘pessimistic’ (as
against BA.4/BA.5/BA.2.75)
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Hosp

Scenarios: Autumn second booster campaign among population aged ‘18+’ or ‘60+’; Vaccine
effectiveness is ‘optimistic’(effectiveness as of a booster vaccine against Delta) or ‘pessimistic’ (as
against BA.4/BA.5/BA.2.75)
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Icu

Scenarios: Autumn second booster campaign among population aged ‘18+’ or ‘60+’; Vaccine
effectiveness is ‘optimistic’(effectiveness as of a booster vaccine against Delta) or ‘pessimistic’ (as
against BA.4/BA.5/BA.2.75)

Incident outcomes
We explored the incidence of COVID-19 per 100,000 over the projection period and in terms of
projected peaks in incidence. We summarised peaks both over the entire projection period, and over
only the autumn-winter period (October through March); we considered (A) the timing and maximum
weekly incidence of each peak, and (B) the total number of peaks.
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Trajectories
Death
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Case
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Infection
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Hosp
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Icu

Peaks
Autumn-winter
Projections over October 2022 through March 2023

Death

A. Size and timing of peaks. Boxplots show summary of the likely value at peak incidence (median and
interquartile range); points show timing and size of peaks from independent sample simulations

138



B. Projected number of peaks (median with 5-95% probability)
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Scenarios: Autumn second booster campaign among population aged ‘18+’ or ‘60+’; Vaccine
effectiveness is ‘optimistic’(effectiveness as of a booster vaccine against Delta) or ‘pessimistic’ (as
against BA.4/BA.5/BA.2.75)
Case

A. Size and timing of peaks. Boxplots show summary of the likely value at peak incidence (median and
interquartile range); points show timing and size of peaks from independent sample simulations
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B. Projected number of peaks (median with 5-95% probability)
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Scenarios: Autumn second booster campaign among population aged ‘18+’ or ‘60+’; Vaccine
effectiveness is ‘optimistic’(effectiveness as of a booster vaccine against Delta) or ‘pessimistic’ (as
against BA.4/BA.5/BA.2.75)
Infection

A. Size and timing of peaks. Boxplots show summary of the likely value at peak incidence (median and
interquartile range); points show timing and size of peaks from independent sample simulations
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B. Projected number of peaks (median with 5-95% probability)
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Scenarios: Autumn second booster campaign among population aged ‘18+’ or ‘60+’; Vaccine
effectiveness is ‘optimistic’(effectiveness as of a booster vaccine against Delta) or ‘pessimistic’ (as
against BA.4/BA.5/BA.2.75)
Hosp

A. Size and timing of peaks. Boxplots show summary of the likely value at peak incidence (median and
interquartile range); points show timing and size of peaks from independent sample simulations
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B. Projected number of peaks (median with 5-95% probability)
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Scenarios: Autumn second booster campaign among population aged ‘18+’ or ‘60+’; Vaccine
effectiveness is ‘optimistic’(effectiveness as of a booster vaccine against Delta) or ‘pessimistic’ (as
against BA.4/BA.5/BA.2.75)
Icu

A. Size and timing of peaks. Boxplots show summary of the likely value at peak incidence (median and
interquartile range); points show timing and size of peaks from independent sample simulations
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B. Projected number of peaks (median with 5-95% probability)

Scenarios: Autumn second booster campaign among population aged ‘18+’ or ‘60+’; Vaccine
effectiveness is ‘optimistic’(effectiveness as of a booster vaccine against Delta) or ‘pessimistic’ (as
against BA.4/BA.5/BA.2.75)

Entire projection period
Projections over June 2022 through June 2023

Death

A. Size and timing of peaks. Boxplots show summary of the likely value at peak incidence (median and
interquartile range); points show timing and size of peaks from independent sample simulations
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B. Projected number of peaks (median with 5-95% probability)
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Scenarios: Autumn second booster campaign among population aged ‘18+’ or ‘60+’; Vaccine
effectiveness is ‘optimistic’(effectiveness as of a booster vaccine against Delta) or ‘pessimistic’ (as
against BA.4/BA.5/BA.2.75)
Case

A. Size and timing of peaks. Boxplots show summary of the likely value at peak incidence (median and
interquartile range); points show timing and size of peaks from independent sample simulations
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B. Projected number of peaks (median with 5-95% probability)
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Scenarios: Autumn second booster campaign among population aged ‘18+’ or ‘60+’; Vaccine
effectiveness is ‘optimistic’(effectiveness as of a booster vaccine against Delta) or ‘pessimistic’ (as
against BA.4/BA.5/BA.2.75)
Infection

A. Size and timing of peaks. Boxplots show summary of the likely value at peak incidence (median and
interquartile range); points show timing and size of peaks from independent sample simulations
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B. Projected number of peaks (median with 5-95% probability)
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Scenarios: Autumn second booster campaign among population aged ‘18+’ or ‘60+’; Vaccine
effectiveness is ‘optimistic’(effectiveness as of a booster vaccine against Delta) or ‘pessimistic’ (as
against BA.4/BA.5/BA.2.75)
Hosp

A. Size and timing of peaks. Boxplots show summary of the likely value at peak incidence (median and
interquartile range); points show timing and size of peaks from independent sample simulations
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B. Projected number of peaks (median with 5-95% probability)
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Scenarios: Autumn second booster campaign among population aged ‘18+’ or ‘60+’; Vaccine
effectiveness is ‘optimistic’(effectiveness as of a booster vaccine against Delta) or ‘pessimistic’ (as
against BA.4/BA.5/BA.2.75)
Icu

A. Size and timing of peaks. Boxplots show summary of the likely value at peak incidence (median and
interquartile range); points show timing and size of peaks from independent sample simulations
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B. Projected number of peaks (median with 5-95% probability)

Scenarios: Autumn second booster campaign among population aged ‘18+’ or ‘60+’; Vaccine
effectiveness is ‘optimistic’(effectiveness as of a booster vaccine against Delta) or ‘pessimistic’ (as
against BA.4/BA.5/BA.2.75)

EuropeanCOVID-19
ScenarioHub

The European Scenario and Forecast (https://covid19forecasthub.eu/index.html) Hubs are run
in collaboration between the Epiforecasts team (https://epiforecasts.io/) at the London School
of Hygiene & Tropical Medicine (https://www.lshtm.ac.uk); and the European Centre for
Disease Control and Prevention (ECDC) (https://ecdc.europa.eu).

Contact us (contact.html)
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the experts involved from research and public health sectors. The 
sustained high pressure of a pandemic on responders, such as 
healthcare workers, can lead to lasting psychological impacts 
including acute stress disorder, post-traumatic stress disorder, 
burnout, and moral injury, which can impact individual wellbeing and 
productivity.

Methods

As members of the infectious disease modelling community, we 
convened a reflective workshop to understand the professional and 
personal impacts of response work on our community and to propose 
recommendations for future epidemic responses. The attendees 
represented a range of career stages, institutions, and disciplines. This 
piece was collectively produced by those present at the session based 
on our collective experiences.

Results

Key issues we identified at the workshop were lack of institutional 
support, insecure contracts, unequal credit and recognition, and 
mental health impacts. Our recommendations include rewarding 
impactful work, fostering academia-public health collaboration, 
decreasing dependence on key individuals by developing teams, 
increasing transparency in decision-making, and implementing 
sustainable work practices.

Conclusions

Despite limitations in representation, this workshop provided valuable 
insights into the UK COVID-19 modelling experience and guidance for 
future public health crises. Recognising and addressing the issues 
highlighted is crucial, in our view, for ensuring the effectiveness of 
epidemic response work in the future.

Keywords 
modelling, COVID-19, pandemic response
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Introduction
The response to the COVID-19 pandemic necessitated a  
multi-pronged approach, with infectious disease transmission 
modelling playing a key role in informing strategy and policy  
decisions1,2. Input from UK modellers was mostly channelled 
through weekly meetings of the Scientific Pandemic Influenza 
Group on Modelling, Operational subgroup (SPI-M-O) feeding 
into the Scientific Advisory Group for Emergencies (SAGE)3. 
This advisory group, drawing on expertise from the academic, 
and public health sectors, developed planning scenarios and  
short-to-medium term forecasts and projections, routinely esti-
mated key parameters such as the reproduction number (a proxy 
for transmissibility), conducted routine data analysis, as well 
as authoring ad-hoc reports on modelling results relevant to 
the ongoing pandemic in the UK4,5. Some of these analyses 
resulted in academic papers along with those produced by the  
wider UK modelling community (e.g. 6,7).

The high-pressure environment and daunting responsibili-
ties of those at the frontlines of pandemic response have been 
shown to exert significant psychological tolls. Notably, health-
care workers (HCWs) involved in infectious disease out-
breaks, including COVID-19, have been shown to experience 
profound and enduring psychological impacts. These include 
acute stress disorder, post-traumatic stress disorder (PTSD),  
burnout, as well as moral injury8–10. Moral injury refers to a spe-
cific form of distress that stems from guilt, anxiety, and loss 
of trust when actions or roles conflict with one’s deeply held 
moral beliefs. These psychological impacts not only dimin-
ish individual wellbeing but can also considerably affect worker 
productivity, with lasting effects that can linger for years, as  
exemplified by the 2002/2003 SARS epidemic11,12.

However, the experiences and challenges faced by non- 
healthcare responders to the pandemic, such as those involved 
in modelling and research, have received comparatively less 
attention8,10. Stressors such as high workloads, long hours, tight 
deadlines, and harassment from the public and press during 
the COVID-19 response had the potential to cause both visible 
and invisible impacts. These include mental health impacts,  
exhaustion, social isolation, compromised career progression  
in academia, and moral injury.

The experiences of modelling responders have not been  
systematically discussed but are indirectly reflected in issues 
of staff retention and burnout across institutions. With the aim 
of bridging this gap, on March 28th, 2023, we organised a one-
day workshop to create a space for collective reflection and  
strategising improvements for future epidemic responses. This  
paper seeks to provide an outline of the workshop proceed-
ings, the collective themes that emerged from our discussions,  
and synthesise our suggested actions into a set of priority  
recommendations to enhance future epidemic responses.

Methods
Our approach
We employed an iterative, participatory approach to both design 
and run a reflective workshop with members of the UK mod-
elling community in order to facilitate the summarisation of 

our collective experiences. In the interest of clearly relaying 
the proceedings and results emanating from the workshop, we 
use the term ‘participants’ to refer to attendees (i.e. ourselves,  
including the organisers) in the remainder of the methods and  
the results.

Workshop design
We aimed to ensure the content of the reflective session cap-
tured the needs of the individuals at the forefront of the UK 
modelling response. To inform the content of the workshop, 
the session organisers (SA and ACC), alongside two additional 
members of the UK modelling community, solicited informal 
feedback from individuals involved in the COVID-19 response.  
This feedback included the personal and professional ramifica-
tions of participating in COVID-19 response work, along with  
the obstacles to effective response work and strategies to address 
them.

We then engaged an external facilitator to assist in planning  
the agenda and guiding participants throughout the session. This 
aimed to ensure unbiased management of discussions and to 
enable participants to express themselves openly in a safe and 
supportive environment. To select an appropriate facilitator, 
we sought input from the broader scientific community  
and chose an individual with a track record of successfully  
delivering similar events.

Initial discussion topics were developed by the session organ-
isers in consultation with the external facilitator, drawing on  
anecdotal evidence from conversations with other modellers 
who were involved in the COVID-19 response. Further feedback 
was solicited from two members (KS and YL) of the UK  
modelling community who were not directly involved in the 
organisation process. This resulted in a set of discussion topics  
that addressed the concerns and interests of the community.

Participants
We aimed to include a diverse range of participants involved 
in the UK COVID-19 modelling response, encompassing 
researchers and professional services staff. A brief expres-
sion of interest form was disseminated by the session organis-
ers to the UK modelling community via organisation mailing 
lists, personal networks (aiming to also reach those who may  
have transitioned away from the infectious disease modelling 
field), and social media channels to ensure representation 
across different levels of seniority. We invited all those who  
expressed an interest to attend. We provided a small travel 
fund for participants on a first come first served basis for  
those travelling from across the UK.

Workshop structure
Participant arrival and introduction 
Upon arrival, the facilitator encouraged participants to engage 
with flipchart papers displaying “snapshot” questions with  
attendees providing their responses using stickers. These were:

1.    Do you think sufficient action is currently being taken 
to improve future outbreak responses to the standard  
you think is acceptable?
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2.    Who is responsible for ensuring people are supported,  
and appropriately credited for their work?

3.    Summarise your pandemic experience in one word.

See the supplementary information for the multi-choice  
answers13.

At the formal start time, the facilitator opened with an over-
view of the day’s agenda, establishing expectations and a code 
of conduct for participants. The Chatham House Rule (“share 
the information you receive, but do not reveal the identity of 
who said it”14) were introduced to ensure that individuals would 
not be identified, while allowing for the synthesis of outputs.  
A co-organiser (SA) shared their personal pandemic timeline 
(see the supplementary information13), setting the stage for the  
first exercise.

Iterative discussions of experience 
Participants divided themselves into pairs, after being encour-
aged to work with someone they would not usually interact 
with. They were asked to discuss their individual pandemic  
timelines for 15 minutes each, while the partner asked  
questions based on those we developed when designing the  
workshop, listened, and asked follow up questions. The  
following questions were provided:

1.    What was your pandemic timeline? What were the  
highs and lows?

2.    What was your experience of pandemic work like?

3.    What were some of the things that helped assist you to  
do effective research during the outbreak response?

4.    Do you think team science was appropriately  
supported over the pandemic?

5.    Has your employer or the wider community taken 
action to help mitigate any of the personal or profes-
sional costs/challenges you identified? What more can be  
done?

6.    Do you think there were barriers to doing effective and sus-
tainable COVID-19 outbreak response work? If so, what 
were they?

7.    What has been done and what more can be done to 
reduce any barriers to effective outbreak response work  
in the future?

We also provided suggested follow-on questions which are  
available in the supplementary information13.

Pairs then formed groups of four to identify common themes 
from their one-to-one reflections using post-it notes. The group  
was then brought together and themes were summarised and  
organised into headline categories. This approach maintained 
anonymity for the participants, while capturing their reflec-
tions in a summarised form. As a combined group we then 
further discussed these topics, leading to the identification  
of six major themes.

Synthesising recommendations 
The latter portion of the workshop focussed on pinpoint-
ing recommendations for action. Participants were presented 
with primary categories derived from the morning’s discus-
sions. Participants were then divided into new groups, with 
each group assigned a theme. Each group was tasked with 
developing recommendations and potential implementers.  
Participants could move between themes and contribute their 
thoughts. These recommendations, along with actionable steps 
and suggestions for those responsible for implementing, were 
then exhibited on a wall for group review. Finally, attendees  
used dot stickers to identify priorities, allowing a visual  
representation of the group’s consensus.

We (ACC, KS, YL, SA) then reviewed the contents of the group 
discussions based on the post-it notes, whiteboards, and recom-
mendation board created during the session. Two authors (ACC 
and KS) independently digitised the output, and four authors 
(ACC, KS, YL, SA) independently reviewed results. We then 
came to a consensus on the common themes of participants’  
experiences, using the major themes identified by participants 
as a guide, and priority recommendations for stakeholders. 
We prepared an initial draft and shared this with participants. 
Finally, we integrated feedback, ensuring that the insights  
derived from the workshop were preserved.

Results
Outputs from the workshop
Summary of attendees 
The event was attended by 27 individuals, including 25 research 
staff and two professional services staff. Staff attended from 
five higher education institutions (London School of Hygiene 
& Tropical Medicine, Imperial College London, University 
of Warwick, Liverpool University, the University of Oxford), 
and the UK Health Security Agency (UKHSA). The majority 
of attendees were based in London. Participants represented  
various career stages, including early, mid-career, and sen-
ior academics and professionals. Among the attendees were  
multiple members of SPI-M-O and SAGE.

Snapshot reflections 
In response to the initial snapshot question, “Do you think suf-
ficient action is currently being taken to improve response 
work to a standard you think is acceptable?”, the partici-
pants expressed an overwhelmingly negative view (17/18). 
In the second snapshot question, “Who should ensure  
that individuals are adequately supported and credited for 
their response work” (this question allowed multiple answers),  
participants suggested this responsibility was shared among 
stakeholders. Affirmative responses were more common on 
the panel listing smaller groups than on the panel listing larger 
organisations, indicating that respondents considered them-
selves (9/56), line managers (16/56), and research groups (12/56)  
more responsible for this task compared to larger organisa-
tions such as institutions (6/56), academic funders (5/56), and  
the “system more generally” (8/56). The second panel dis-
playing the larger organisations was situated to the right of 
the first panel, which may have resulted in decreased vis-
ibility. Photos of the panels are available in the supplementary  
information13.
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Each attendee was asked to summarise their pandemic experi-
ence in one word using post-it notes (see supplementary infor-
mation). Positive responses were: “exciting”, “valuable”, and 
“engrossing”. Neutral responses were: “intense”, “unprec-
edented”, “ambiguous”, “focussed”, “hectic”, “repetitive”, 
and “surreal”. Negative responses were: “hard”, “austere”,  
“stressful”, “lonely”, “harrowing”, “frustration”, and “exhaust-
ing”. Multiple participants added stickers (indicating support)  
to both “stressful” and “exhausting”.

Themes from paired and group discussions 
In the paired and small group discussions, several topics emerged 
into which participants’ perspectives were grouped. These 
included (reproduced verbatim from those listed on the day):  
“societal impact”, “mental health”, “life outside”, “emotions”, 
“personal”, “team spirit”, “institutional structures”, “work  
process”, “work feeling/support”, “work pressure”, “(negativ-
ity about)” “positives”, “career direction”, “rewards”, “access 
and privilege”, “bad stuff”, “COVID-19 modeller-specific expe-
riences”, and “general experiences”. In the following session,  
participants then refined these themes to leave the follow-
ing: “institutional factors”, “mental health”, “life/personal”,  
“work process”, “career direction”, and “social impact”. 
See the Supplementary Information for the full list of  
participants’ points13.

After the workshop, we reviewed individual post-it notes and 
further refined these themes to leave: funding and institu-
tional support; recognition, rewards, and access; team and 
work dynamics; non-academic contributions; and personal  
impacts. The themes emerging from the group discussions 
are synthesised, stratified by these themes below. We indicate 
direct quotes from individual authors using quotation marks and  
italics.

Funding and institutional support
Lack of institutional support: Insufficient institutional sup-
port for those involved in the COVID-19 modelling response 
was a common issue among participants. Many felt that they 
were not protected by their institutions during the response 
or in its aftermath; for example, when receiving aggres-
sion from some sectors of the media and general public.  
Additionally, groups highlighted the lack of processes to 
respond in an emergency while protecting psychological safety. 
This included the need for training for managers and teams,  
and wellbeing procedures and human resources policies.

Contract insecurity and inflexible funding rules: The precarity 
of short-term contracts due to heavy reliance on external grant 
funding was highlighted, along with implicit pressures to under-
estimate personnel time in funding applications to meet budget 
thresholds, adhere to eligibility criteria and achieve cost recovery 
targets. The importance of providing sufficient and sustainable 
personnel funding was stressed, with this including academic 
and professional services roles such as project managers,  
administrators, communications professionals, technicians, and 
software engineers.

Recognition, rewards and access
Inadequacy of reward metrics: Credit attribution mechanisms 
were a recurring concern. Participants emphasised that there 
are currently insufficient frameworks to reward the nature of 
response work itself. Hurdles in receiving recognition for work 
included contributing to confidential reports where involve-
ment was unable to receive external acknowledgement. In  
particular, it was noted that outputs such as software tools 
and policy reports do not fit within the traditional academic 
credit structure. Similarly, participants recognised that pro-
motions, paper authorship, and grant Principal Investigator 
(PI) positions were not designed to promote collaborative 
team working. This was identified as a problem for both the  
general wellbeing of researchers and the quality of the science  
produced. The unequal, and individual-focussed, credit structures 
that persisted throughout the pandemic were also discussed, 
with senior or well-connected researchers being identified 
as receiving the majority of recognition. Participants noted 
“rewards not attributed equally”, and that “institutions  
got awards, not individuals (not all key players)”. This une-
ven reward system was seen as contributing to a competitive  
culture, which was identified as a problematic aspect of  
response work and academia more widely.

Access to decision-making spaces: Individuals had different 
access to policy-making spaces which did not always reflect 
where or how their work was used. As a result, some indi-
viduals who lacked access reported feeling left behind when 
it came to updates relevant to their work. There was a general  
consensus that there should be more transparency regarding 
these forums for those involved in producing the work  
presented.

Team and work dynamics
Insufficient capacity: Participants highlighted issues with “not 
being able to say no” and the “pressure [that] came in waves. 
‘Not again...’” These issues contributed to poor working prac-
tices within teams, including insufficient capacity and reliance 
on one or two individuals to perform key tasks. In turn, this 
made it more challenging for these individuals to maintain 
a work-life balance. The highly pressurised and reactive  
nature of response work meant that there was not always space 
for teams to reflect on the effectiveness of routine aspects of 
the response, including whether academic groups were the 
best placed to perform this work. In addition, despite a need 
for additional capacity, working in highly reactive ‘response 
mode’ made it difficult to properly onboard new starters  
and hand over responsibility of tasks and projects where 
resources were available to do this. There was reference to  
other professions more adapted to response work, such as the  
military and emergency services, suggesting there may be  
learning to be gained from these sectors.

Competing demands and barriers to progression: Individuals 
faced challenges in balancing competing demands of and  
distinguishing between ‘response’ work and research. Some  
individuals sacrificed otherwise beneficial opportunities, such 
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as teaching. Although response work created some opportunities 
for career progression, these were distributed unequally relative 
to contribution. Access to these opportunities depended on  
several factors, including career stage, and relative privilege 
(which is the differential access to resources, opportunities, 
and advantages some groups have compared to others). We 
note that privilege is often invisible to those who have it, 
and recognizing one’s own relative privilege is a key part of  
understanding and addressing social inequalities.

Collaborative working: Participants cited the positive experi-
ence of collaborative working and camaraderie within teams 
– academic, professional, and hybrid. However, as the pan-
demic progressed, there was a sense that the egalitarian working 
structures, which some felt were put in place at the start of 
the pandemic, faded: “Shift from egalitarian structure to pre-
existing hierarchies”. Meanwhile, with close working rela-
tionships and the intensely personal impact of the COVID-19 
response, professional disagreements sometimes took on an  
unusually emotional tone.

Non-academic contributions
Role of professional services staff: Participants highlighted 
the significance of integrating professional services roles into 
research teams, mentioning that these staff played crucial roles 
in response-related tasks. Participants pointed out that profes-
sional services roles, especially administrative positions like 
project managers, are frequently deemed ineligible costs in  
grant applications. Similar to academic staff, many individuals 
in these roles work on short-term contracts. Consequently, these  
positions were often under-resourced and experienced high  
turnover.

Public health agency workers: Participants emphasised the 
importance of strengthening the collaboration between aca-
demics and public health agencies, with the aim of fostering 
knowledge and skills exchange both during, prior to, and after 
responses. The importance of a bidirectional exchange was high-
lighted, with academics having the opportunity to learn about the  
practical challenges faced by public health agencies, while 
public health staff would benefit from access to the latest  
research findings. Participants called for more opportunities 
to facilitate these exchanges, such as joint workshops, shared  
working spaces, and dedicated training sessions.

Personal impacts
Public recognition: The COVID-19 pandemic brought the 
infectious disease modelling field public recognition and scru-
tiny. Participants acknowledged the personal responsibility 
that came with this visibility, while valuing the significance 
of their work. While friends and family gained deeper  
understanding of their work, some highlighted the chal-
lenge of work and life becoming intertwined. Participants 
referred to the “surreal level of public and media interest 
(good or bad)” and the idea that “work and the world were one  
and the same. Neither was an escape from the other.”

Mental ill health and burnout: Participants across organisa-
tions and seniority levels reported prioritising work over their 
health and wellbeing, leading to extreme levels of overwork, 

burnout, and associated mental health effects, including 
depression and anxiety. The experience was common among  
attendees at all levels and career types, with recognition that 
this can creep up over time and not enough has been done to  
mitigate against it. Some participants expressed guilt and 
a sense of ‘survivor bias’ from being able to remain within 
academia, having witnessed friends and colleagues leave the 
field. One post-it note summed up the feeling of “trading off 
career versus health and everything”. People were reluctant 
to reach out to managers or colleagues for support. With  
close working relationships, the personal challenges faced by 
colleagues inevitably impacted the wider team. No strategies  
were identified by participants as having been in place to 
address these issues during the pandemic response or having  
been implemented more recently.

Commitments outside of work: Several participants highlighted 
the challenges they faced in balancing high-intensity roles with 
personal obligations during the pandemic response. They shared 
experiences of coping with loss and caregiving responsibili-
ties, which were particularly difficult for those whose partners 
were also involved in the response. Certain groups faced  
heightened challenges; for example, women often bore a  
disproportionate burden of caregiving tasks, early career 
researchers tended to have less stable domestic situations,  
and non-UK nationals experienced difficulties such as visa  
concerns or being separated from their home countries.

Recommendations
The strategies collectively proposed at the workshop spanned 
societal impact, mental health, career direction, work processes, 
personal life, and institutional policy. Over ninety suggestions 
were made for possible actions by research teams, employers, 
and funding entities. The full list of recommendations is  
available in the supplementary information13.

Priority recommendations
Participants distilled a set of priority recommendations to 
enhance the support and sustainability of epidemic response 
work. These directives tackle crucial facets affecting the well-
being and efficiency of those engaged in pandemic response. 
Example actions for implementing these recommendations  
are italicised below each recommendation (see the full list of 
suggested actions from the workshop in the supplementary  
information13).

1. Acknowledge, and reward, impactful response work at  
institution, funder, and research community levels.

�Funding bodies refine impact measures to credit all forms 
of output produced during, and required for, response work; 
institutions standardise incorporating response-driven  
work into criteria for doctoral theses and promotion.

2. Encourage routine interaction between academia and  
public health agencies, including consistently reviewing the role  
of each during epidemic responses.

�Government bodies and research institutes create  
sustainable dual positions recruiting from both sectors.
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3. Ensure response teams are well-staffed, well-resourced,  
stable, and provided psychological support.

�Research teams establish sustainable team-building 
and training programmes with long term support from 
funders during non-response periods to ensure individuals  
feel equipped and supported to engage in response work.

4. Increase the transparency of the evidence pathway from sci-
entists to decision-makers making it easier for those across 
the scientific community to contribute as well as making the  
evidence base for decisions clearer to the general public.

�Government bodies standardise rapid open access to the 
minutes of scientific advisory meetings and encourage input  
from a wider range of sources.

5. Implement best practices for a sustainable work environment.

 Employers promote leave-taking and respecting work 
hours, and clarify communication about processes and 
rewards across career stages, integrate support roles into 
research teams, and standardise the onboarding of new team  
members.

Discussion
This reflective workshop brought together 27 individuals from 
the UK infectious disease modelling community to engage 
in a dialogue around the personal and professional impacts 
of their COVID-19 response work. Participants represented 
various career stages, institutions, and disciplines, enabling a 
diverse exploration of experiences and perspectives. We identi-
fied areas of improvement in the current approach to modelling  
during epidemic responses, with these including greater sup-
port for responders, line managers, and research groups. Our 
experiences ranged from positive to negative, with stress and 
exhaustion being particularly prominent. Through in-depth dis-
cussions, key themes emerged, including institutional support, 
mental health, career direction, and social impact. Challenges 
such as lack of institutional backing, insecure contracts, inad-
equate reward systems, and personal impacts such as mental  
health issues were identified. The roles of professional serv-
ices staff and public health agency workers were underscored. 
To address these issues, we identified a variety of strategies 
and priority recommendations, including acknowledgement  
and reward of impactful response work including for professional 
service staff, enhanced academia-public health collaboration,  
minimising dependence on key individuals, increased transpar-
ency in decision-making processes, and the adoption of sus-
tainable work practices. These findings offer valuable insights 
for the ongoing pandemic response and future public health  
emergencies.

Our approach benefitted from being embedded in the experi-
ence of the UK modelling community. The session was com-
munity-driven, adopted an informal approach, and included 
participants from various career stages and perspectives on the 
response. Prior input from the community ensured the event’s  
relevance for attendees, while employing an external facili-
tator helped create a safe and structured environment for  

discussion. We then collectively agreed on key themes and  
recommendations.

However, a key limitation was participant representation. This  
was exacerbated by it being a one-day workshop, meaning 
we could only represent the views of those who were avail-
able and able to attend in person on that day. Attendees were  
primarily from London and Southeast England, possibly due 
to limited support for travel costs. Additionally, despite efforts 
to involve individuals who had left the infectious disease  
modelling field, few were able to attend. Our collective expe-
riences are therefore likely to be missing some of the most 
challenging experiences and perspectives of responders, 
and our conclusions may be more moderate than if a wider  
range of participants had attended. Despite this bias, we 
feel this provides valuable insights into the UK COVID-19  
modelling experience but should be viewed as a summary 
of a small group’s experiences and opinions, with potential  
differences across jurisdictions and groups. We encourage 
responders in other locations to conduct similar exercises and  
to synthesise these findings for a broader understanding.

Ongoing efforts have begun to evaluate UK modelling work  
during COVID-19 both in terms of modelling results (e.g. fore-
casts or scenario projections6,7), and the systems and processes 
enabling the response2,15,16. However, so far little has been 
done to report the experiences of responders themselves as 
we have done in this work. In the context of more general  
crisis response, more work has been done to understand the  
key challenges, particularly on healthcare workers (HCW). 
For example, hospital disaster preparedness plans may incor-
porate mental and behavioural health interventions (such as 
resource signalling, peer support, and referrals for at-risk  
individuals), which have proved to be effective in reducing  
mental health morbidities17,18. Lessons from previous epidemics 
also emphasise the importance of effective staff support  
and training in preparing for future outbreaks. Perceived 
adequacy of training and support had a protective effect on 
adverse outcomes in HCW responders to the SARS epidemic19. 
These approaches, which have established use in high-stress  
occupations, could be adapted and applied to support  
modellers during epidemic response situations.

The workshop identified priority recommendations aimed at 
enhancing support and sustainability in pandemic response  
work. Our discussions underscored the importance of rec-
ognising and rewarding significant contributions to public 
health crises at all levels. We advocated for fostering closer ties 
between academia and public health agencies, building well-
resourced, resilient teams, and ensuring their psychological 
well-being. Discussions also emphasised the need for increased  
transparency in the evidence-to-policy pipeline, improved work-
life balance, and clear institutional communication. Further 
suggestions included standardising onboarding procedures  
and integrating support roles into teams.

Whilst we identified several themes and recommendations 
during our workshop, we did not explicitly separate issues 
specific to the pandemic response from broader academic  
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challenges. Some recommendations, for example, recognising 
non-traditional contributions or normalising annual leave, pertain 
to broader issues. It is important to discern whether these con-
cerns are long-standing systemic issues that have been simply 
exacerbated by the pandemic, or if they have been particularly  
highlighted due to the unique stressors of the pandemic.

Conclusions
As a community we want to acknowledge that the pandemic 
has engendered widespread hardship, stress, and ill health 
throughout various populations. It is crucial to reflect on and 
address these profound impacts as we continue to tackle the  
crisis and prepare for future epidemic responses.

The consequences of the COVID-19 pandemic have been pro-
found on those at the forefront of the UK modelling response. 
In this work, we have summarised our experiences and whilst 
we recognise that many of the issues we have identified impact 
those in our field more generally we believe that they are  
particularly problematic for epidemic response work. It is evi-
dent that changes are required across multiple domains, includ-
ing individual work, team dynamics, and institutional structures,  
to enable future effective epidemic modelling responses.

Achieving these changes necessitates investment from gov-
ernments, funding bodies and institutions. The solutions 
needed to foster a healthy and sustainable environment for 
future epidemic response work will not be attainable without 
such investment. Additionally, there is a need for teams aim-
ing to respond to epidemics to redefine their working methods,  
developing response preparedness plans that emphasise  
wellbeing, training, and career development. It is clear that 
even these localised initiatives demand time investment from  
those leading them, and as a result, require support.

As it stands, future epidemic responses are likely to raise  
similar challenges to those we have identified here, including 
reliance on a select number of individuals, excessive workloads 
and the exacerbation of systemic inequalities. It is critical we 
act outside of response contexts; for example, by implementing 
the recommendations we have outlined, to mitigate these  
issues and respond more effectively in future.

Consent
This work is the sole product of collaboration among the 
named authors. All inputs used in this work were those of the 

authors, with no data collection from any additional participant 
or data source. Therefore, all participants in this work are 
named authors of this manuscript and have approved both the  
manuscript and supplement for publication.

Data availability
Underlying data
Open Science Framework: Underlying data for ‘Improving 
modelling for epidemic responses: reflections from members 
of the UK infectious disease modelling community on their  
experiences during the COVID-19 pandemic’, https://www.doi.
org/10.17605/OSF.IO/4JNCB13.

This project contains the following underlying data:

•    Data supplement.pdf

-    Survey questions

-    Snapshot questions

-    SA pandemic timeline

-    Session questions

-    Group discussion themes

-    Themes recommendations

-    Priority recommendations

Data are available under the terms of the Creative Commons 
Zero “No rights reserved” data waiver (CC0 1.0 Public domain  
dedication).
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This article reports findings arising from a one-day workshop held in London in early 2023, in 
which participants were asked to reflect on the personal and professional impacts of their 
involvement in informing strategy and policy during the COVID-19 pandemic, for the purposes of 
identifying key issues (and potential recommendations to mitigate these issues) and to provide 
guidance for future public health crises. 
As the authors acknowledge in the introduction, there is a well-established body of literature 
concerning the impact of disasters on exposed persons, and ways to mitigate these impacts, but 
this literature primarily focuses on direct responders and survivors. Less attention has been given 
to persons who contribute indirectly to disaster response, such as the infectious disease modelling 
community represented in this article. I'm only aware of one paper that reflects on (professional) 
impacts of the COVID-19 response on modellers: "The COVID-19 response illustrates that 
traditional academic reward structures and metrics do not reflect crucial contributions to modern 
science", which was written in 2020 by three authors of this article. 
The common themes and personal impacts identified here may not necessarily be surprising 
(many reflect broader, long-standing issues in academia) but they deserve genuine attention and 
reflection. Many of these issues resonate strongly with my own experiences, and those of my 
colleagues. I wholeheartedly agree with the authors' conclusion that it is "critical we act outside of 
response contexts". 
The workshop was carefully planned and conducted. The supplementary materials attest to the 
level of engagement from the participants, and to how thoroughly the organisers have captured 
and reported the findings. It is unfortunate, but entirely understandable, that only a few 
individuals who had left the field were able to attend the event. 
I only have a few minor comments regarding the article text. 
 
1. In "Snapshot reflections", the third sentence begins "Affirmative responses were more common 
...", referring to the question "Who should ensure that individuals are adequately supported and 
credited for their response work". 
   My first thought was that this is not a question with a "yes" or "no" answer. It took me a moment 
to recall that this was a multiple-choice question, and so participants were selecting responsible 
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organisational units from a predefined list. 
   The first half of this sentence could potentially be removed, so that it begins "Respondents 
considered themselves (9/56), line managers (16/56), and research groups (12/56) more 
responsible ...". 
 
2. In the "Team and work dynamics" results section, the authors report that we might learn from 
other professions that are better adapted to emergency response work. I think this is a great 
suggestion, and worth highlighting as an example action for the third priority recommendation 
("Ensure response teams are well-staffed, well-resourced, stable, and provided psychological 
support"). 
 
3. The "Non-academic contributions" results section highlights the importance of strengthening 
the collaboration between academics and public health agencies. This reminds me of Pan-InfORM 
(Pandemic Influenza Outbreak Research Modelling), a Canadian initiative that was established in 
2009 for this very purpose. The authors could cite a recent review of Pan-InfORM activities 
(published in 2021, doi:10.3934/publichealth.2021020) as an international example. 
 
4. Regarding the final sentence of the discussion: 
   "It is important to discern whether these concerns are long-standing systemic issues that have 
been simply exacerbated by the pandemic, or if they have been particularly highlighted due to the 
unique stressors of the pandemic", 
   I'm not sure I fully appreciate this distinction. If a concern has been "particularly highlighted" by 
the pandemic, I still interpret it as meaning that the concern was relevant prior to the pandemic, 
and I wonder if the intended meaning is that the concern was not identified or appreciated prior 
to the pandemic? 
   This sentence also led me to expect an outline of different approaches that might be used to 
address long-standing systemic issues versus those were specific to the pandemic response. 
Otherwise I don't understand why this distinction is being made. 
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Priority recommendations

Survey questions

How best would you describe your role in responding to COVID-19?
● Academic researcher
● Civil servant
● Professional services staff
● Other

How best would you describe the role you are doing now?
● Academic researcher
● Civil servant
● Professional services staff
● Other

Approximately how many years experience do you have in your role?
● 0-4 years experience
● 5-9 years experience
● 10+ years experience

If you feel comfortable doing so, please provide an overview of the work you did during the
COVID-19 response.
Examples of this might include:

● facilitating meetings
● data management
● producing routine estimates for surveillance and submitting them to advisory bodies.
● developing tools and methods and support their use by other responders
● providing scenario estimates in response to policymakers requests
● writing reports
● academic paper writing
● attending meetings
● supporting researchers
● speaking to the media, ... etc.

On a scale from 0 to 10, how would you rate your professional experience in responding to
COVID-19 in the UK?
0 - extremely negative
5 - neutral
10 - extremely positive

What professional costs, if any, did you experience from being involved in the response?

176



Think about both short- and long-term costs

What professional benefits, if any, did you experience from being involved in the response?
Think about both short- and long-term benefits, for example:

1. number of first author papers
2. promotions/career progression
3. successful grants

On a scale from 0 to 10, how would you rate your personal experience in responding to
COVID-19 in the UK?
0 - extremely negative
5 - neutral
10 - extremely positive

What personal costs, if any, did you experience from being involved in the response?
Think about both short- and long-term costs

What personal benefits, if any, did you experience from being involved in the response?
Think about both short- and long-term benefits

Has your employer or the wider community taken action to help mitigate any of the personal or
professional costs you identified?

● Yes
● No
● Somewhat

Can you identify areas where action has been taken and areas where it has not?

Do you think there were barriers to doing effective and sustainable COVID-19 outbreak
response work?

● Yes
● No
● Maybe

What were some of the barriers to doing effective and sustainable outbreak response work?
For example, thinking about:

1. funders
2. employer organisations
3. supervisors
4. peers
5. computing resources
6. human resources
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What can be done to reduce barriers and better support those involved in outbreak response
work in the future?

What were some of the things that helped assist you to do effective research during the
outbreak response?
For example, thinking about:

1. funders
2. employer organisations
3. supervisors
4. peers
5. computing resources
6. human resources

Do you think sufficient action is currently being taken to improve future outbreak responses to
the standard you think is acceptable?

● Yes
● No
● Unsure

Is there anything else you'd like to add?
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Snapshot questions

Whiteboards with the following questions were available for the first hour of the session for
participants to add to with either post it notes or sticker dots. Numbers in brackets [#] represent
the number of sticker dots placed by participants.

1. Do you think sufficient action is currently being taken to improve future outbreak
responses to the standard you think is acceptable?

● Yes [1]
● No [18]

2. Who is responsible for ensuring people are supported, and appropriately credited for
their work?

● You [9]
● Your line manager [16]
● Your research team [13]
● Your institution [6]
● Academic funders [5]
● The system more generally [8]
● Other? [0]
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3. Summarise your pandemic experience in one word.

● Ambiguous
● Engrossing
● Hard
● Intense (+1)
● Frustration
● Austere
● Valuable (+1)
● Repetitive
● Lonely
● Exhausting
● Focused
● Stressful (x2) (+1) (+1)
● Exciting
● Unprecedented
● Surreal
● Hectic
● Harrowing (+1)
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Session questions
1. What was your pandemic timeline? What were the highs and lows?
2. What was your experience of pandemic work like?

Below are some suggested directions to take this:
● What did you expect to experience when you started working on the pandemic

response, and how did this differ from what you actually experienced?
● Did you get any benefits?
● Were there any negatives?
● How did your professional and personal experiences differ?
● Do the professional gains outweigh the personal costs or vice versa?
● Do you think privilege played a role in your experience?

3. What were some of the things that helped assist you to do effective research during the
outbreak response?
Some examples could be:

● Management practices
● Contract duration
● Professional services staff
● Funders
● Employer organisations
● Supervisors
● Peers
● Computing resources
● HR policies

4. Do you think team science was appropriately supported over the pandemic? Some
potential directions:

● What elements of team science were most important to your work?
● Has anything changed since prior to the pandemic in terms of support for team

science?
● What role did professional services staff, research administrators and managers,

press and media teams - have on your ability to do effective response work?
5. Has your employer or the wider community taken action to help mitigate any of the

personal or professional costs/challenges you identified? What more can be done?
6. Do you think there were barriers to doing effective and sustainable COVID-19 outbreak

response work? If so, what were they?
7. What has been done and what more can be done to reduce any barriers to effective

outbreak response work in the future
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Group discussion themes
Participants formed six groups and were asked to summarise their pandemic experience using
post it notes, organised into self-identified themes on a whiteboard (one per group). All text is
reproduced below, source data photos available on request.

Group 1
● Life outside

○ Partner in field or not
○ Personal circumstances
○ Comradeship - shared experience
○ Importance of camaraderie in fields like military response - conflicts w/

academic reward structure
● Rewards

○ Rewards not attributed equally
○ Institutions got awards, not individuals (not all key players)
○ Don’t have good mechanisms for rewarding teams (as opposed to

individuals)
● Work pressure

○ Work life balance
○ Overwork
○ Lack of strong management
○ Lack of leadership
○ Line managing
○ Mismatch org - task

● Bad stuff
○ Authorship issues
○ Professional conflicts
○ Professional character assassination

● Access & privileges
○ Different layers of privilege
○ Institutional size (bigger uns = easier)
○ Country of origin
○ Well connected researcher = better access to data

Group 2
● Career direction

○ Responsibility at expense of research breadth
○ Need to get back to long term planning
○ Some career opportunities (but added stress)
○ Missing out on non-publication experiences
○ Big picture vs detail

● Work process
○ Loose in a tornado
○ Lots of competing demands
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○ Difficult to stop rapid work
○ Outsourcing prioritisation
○ Hybrid work

● (Negativity about) positives
○ Shame associated with “doing well”
○ Positive ? networking + connections
○ Career advancement
○ Acknowledge previous bad work habits

● Work “feeling” / support
○ Not recognising MH impacts when you’re in it
○ Lack of understanding from non C19 colleagues
○ Missing “in person” cues in interaction
○ Need for more support - burnout
○ Lack of support / less guidance
○ Missing informal “check-ins” working remotely
○ Pride in overwork

● Personal
○ Better boundaries / priorities
○ Paused personal commitments
○ “Is it still March 2020?”

Group 3
● A

○ Team spirit
■ New vs existing
■ Lack of support
■ Individual shared
■ Competitive
■ Collaboration

○ Institutional
■ Leadership
■ Protection
■ Recognition
■ Junior members

● B
○ Mental health

■ Lack of desire
■ Reintegration
■ Uncertainty
■ Work-life balance
■ Children, partners / home, family
■ Travel
■ Guilt
■ Feeling stuck in time-space-role
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■ Variable speed of time
■ Dealing with losses

○ Societal impact
■ Responsibility
■ Value of work
■ Representation of work
■ Sustainability
■ Guilt

Group 4
● COVID modeller specific

○ Everyone busy = harder to get support
○ Talking about & acknowledge the relative difficulties of each others experiences
○ Surreal level of public + media interest (good or bad)
○ Differences in levels of success & contribution resulting in inequality in various

forms, i.e. lots of success based partly on luck
○ Hard to onboard and shift responsibility (sorry new people!)
○ Difficult to balance routine modelling and interesting innovative work
○ Being lumbered with “shit” jobs
○ Worked too much because too much work to do

● More general experiences
○ Worked too much because nothing else to do
○ Work + the world were one and the same - neither was an escape from the other
○ Pressure came in waves “not again…”
○ And coincided with Xmas
○ Feels like time didn’t exist i.e. no memories for a lot of it
○ Really hating the policies for young people

Group 5
● Work

○ Lack of operational data
○ What is “good enough”?
○ Not being able to say no
○ What was the point of some of the work
○ Other work pressures e.g. teaching
○ Waves of work
○ Working overnight
○ Clashes over motivation/priorities

● Emotions
○ Powerlessness
○ Sadness
○ Frustration + anger
○ Uncertainty
○ Desensitised
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○ Pride
● Life

○ Skewed sense of time
○ Life events
○ Child care (x2)
○ False memories

● What to do next?

Group 6
● Structures / work

○ Shift from egalitarian structure to pre existing hierarchies
○ Collaborative work excitement
○ Team work challenges
○ Gambling / return on investment
○ All a blur
○ Survivor bias
○ Responsibility of managers to look after - who is responsible?
○ Trust

● Structures / life
○ Burn-out creeps up on you - how to avoid
○ Life events (juggling)
○ Self-care
○ Coping mechanisms
○ Personal pandemic preparedness
○ Caring for others
○ Impact of team members’ personal challenges on everyone

● Emotions / work
○ Reconciling different perspectives on hierarchy & team working
○ Who gets credit
○ Space for communicating
○ Guilt
○ Comparing self with others
○ Frustration
○ Feeling useful
○ Feeling of lack of legitimacy
○ Pride
○ Self perception vs others’ perception
○

● Emotions / life
○ Trading off career vs health / everything “just 1 more”
○ Personal responsibility (feelings of)
○ Maternity leave
○ “Fresh blood” (return from leave)
○ Fear of missing out
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Themes
Participants were tasked with grouping top-level themes from the group discussions into broad
categories as a spider-map. This created the following:

● Work life
○ Life outside
○ Life
○ Personal
○ More general experiences

● Work - covid modeller specific
○ Work

■ Work process
■ Work pressure

○ Social impact
○ Team spirit

■ Work “feeling support”
■ Mental health
■ Emotions

● Rewards
○ Structures
○ Institutional
○ Access & priveleges

● Career direction
○ Bad stuff
○ (Negativity about) positives

186



Recommendations
We reproduce text from the poster boards. We include the implementor suggested by
contributors at the end of each statement where this was done.

Social impact
- Educate public / policy maker of modelling knowledge for better communication
- Develop primers/training and build on existing links [research team]
- Ensure impactful COVID work understood at funder/institution level (esp. If less

obvious/visible)
- Support for dissemination of work/case studies [team/institution/funder]
- Funder buy-in: creating opportunities to support consolidation of developed methods and

tools
- See credit [and fund] all outputs - incl. Software and communication, media, public

engagement etc. [funders/managers/institution]
- Formalise connections between teams/disciplines/functions - make sure we retain “what

worked”
- Provide support (e.g. MH) to reduce burnout + increase retention of institutional memory
- Do[...?]ting connections [line managers]

Mental health
- Culture shift

- Reframe excellence
- Raising awareness (literacy) - also of team role in crisis response
- Preparedness; peace time team building / leadership training [wellbeing manager, centre

manager]
- Institutional safeguarding
- “We think we do this well, but we don’t” needs embedding over a sustained time
- Departmental leadership buy in; lead by example (processes - not emailing at night etc)

[funders, institution, people]
- Resilience training (peers support) [institution]
- Psychological first aid [institution]
- Individual + management training
- Adequate resourcing of central services + research teams to mitigate against burnout =

funding. [funders, institution]

Career direction
- Now

- Possibly greater acceptance of portfolio PHDs
- Leeway in examiners for PhDs during covid/emergencies
- More recognition of non-traditional outputs

- Future
- Improve ease of movement in/out of public health agencies (eg UKHSA), eg dual

positions
- Shifting routine data analysis to public health bodies ASAP
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- Stop/end routine activities as soon as they’re not useful
- Find a way to credit confidential work

- How/who
- Institutions & senior academics to write letters of support for PHD students & staff

with ‘non-traditional’ outputs [managers, institution]
- Joint appointments at public health agencies [funders]
- Credit all outputs: academic, tool development, communications, public

engagements, confidential reporting
- Clear expectations for promotion [managers, funders, institutions]
- Distinguish “academic” vs “emergency” response
- Disaster roster + exercise

Work process
- Capacity for cycling between response & research
- Reduce structural reliance on 1-2 people [in] a team performing specific task
- [O]n call system?
- [A]nnual leave
- Prioritise capacity
- Project manager incorporated in team [department, funder]
- More transparency from government committees so groups without people on them

didn’t get as left behind as it seemed (to me at least)
- Transparent preparedness plan [UKHSA, govt]

- Who sits on gov committees
- What their roles/responsibilities
- White paper [dedicated working group incl funders]

- Clarify roles for pandemic response: software engineering, policy-related roles
- Broader reward system, e.g. [funder]

- Code/software
- reports/briefing notes
- “Middle” authors
- Data collection

- Automation / routine vs. one-off - value/impact?
- Regular re-assessment of cost-effectiveness of tasks
- Ask yourself if you really need to do this so often/ so quickly
- Weekly discussions: priorities [team leads]

Life/personal
- Mechanism for feeding back & instituting good working practices
- “GWP” [good working practices] reps & a committee that reports to univ./institution

executive board
- Identify people to take on the role of rep
- Regular surveys to gauge feelings & elicit suggestions

- Time off in lieu (mandatory)
- Paid overtime (capped)
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- Establish working group to make recommendations at a national level
[institution/funders]

- Realistic funding <> deliverables
- Hobby
- Normalise taking annual leave
- Respect (enforce) working hours [individuals & institutions]
- Role models
- Don’t try very hard (Relax)

- Active role
- Guidelines for line managers = cultural change
- Delay emails on weekends and 7pm-7am (allow control)

- Auto-send emails to remind people to take break from work
- PDR [performance and development review] for work/life balance (part of PDR but

checked by welfare manager)
- Palm trees on slack
- Normalise people taking holidays > holiday snaps

- “Covid impact statement” but for more general issues
- Have paid wellbeing officer(s)/manager to check in on personal issues & balance, give

professional advice, etc…

Institutional
- Credit/rewards

- Clear comms on processes
- Meetings non-science (coping, emotion, credits etc)

- > mandatory incorporation in protocols; normalising [institution]
- Starter pack

- Processes
- Support & social
- Technical
- Mentorship/buddies
- Available training
- survey input regular
- share experience between institutions [department groups]

- Resilience
- Firefighter mentality
- Back-up / replaceable

- learn from other professions
- Structure ahead of time & practice [dedicated working group]

- Responsibility
- Hierarchy
- Map roles
- Back-up/replaceable
- Function of/process for support roles (software, admin/comms)

- Starter pack
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- available guidelines
- structured updating [institution, department]

- Clear guidance
- Communication
- Expectations
- Reference resource

- Project manager
- career path for support roles with growth
- comms / software / admin project management [funder, institution]

- Manager training
- Niche to normal
- Timely, frequent
- across seniority

- Mandatory training [institution]
- Lessons learned

- Exit interview feed into updating processes
- Left since start of pandemic
- All staff, not only academic

- Survey / exit interview [manager/department]

Additional
- Pay rise
- Now now v just now prioritisation

190



Figure 1. Example of board showing recommendations
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Priority recommendations
These recommendations were highlighted by at least one participant during a group discussion.
Recommendations which were highlighted by two or more participants are shown in bold.

1. Research teams should ensure that impactful COVID work is understood by funders and
institutions, especially if less obvious/visible.

2. Research teams should initiate sustainable team building and training programs
during non-response periods.

3. Employers should ensure sustainable funding for academic and professional services
roles to reduce burnout risks.

4. Employers should develop processes and guidelines for career growth support
for professional services staff.

5. Employers need to create or expand Wellbeing Officer roles to monitor work-life
balance and provide guidance.

6. Incorporation of work-life balance components in annual performance and development
reviews is essential for employers.

7. Employers should implement capped paid overtime and formal Time Off In Lieu policies
and routinely analyse and act upon staff survey and exit interview data.

8. Funding bodies should adjust eligibility criteria to adequately compensate non-academic
staff for activities.

9. Funding bodies should refine impact measures to acknowledge all outputs,
including academic, tool development, communications, public engagement, and
confidential reporting.
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